Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Reprod Domest Anim ; 53(6): 1442-1447, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30063108

RESUMO

Diagnosis of subclinical mastitis is very important in management of the dairy industry and improvement of dairy cow productivity. S100A12, that is found in related tissues of mammals, is considered as an index for diagnosing inflammatory reaction. To evaluate whether S100A12 is involved in subclinical mastitis, milk somatic cell mRNA from 276 dairy cows was used to detect the transcriptional level of S100A12 by real-time quantitative polymerase chain reaction. A predictive analysis for mastitis was performed, and the correlation between S100A12 and other subclinical mastitis indicators was also assessed. The transcriptional levels of S100A12 in the milk of cows with mastitis were significantly higher than those in the milk of healthy cows (p < 0.05). The correlation analysis showed that S100A12 was positively associated with the somatic cell count and the sodium and chloride concentrations of milk. In contrast, a negative correlation was found between S100A12 and the potassium concentration and pH of milk. However, no significant correlation was detected between S100A12 and the other parameters, such as protein, lactose, ash, fat, density, Ca2+ and SNF. These results suggested that the S100A12 level in milk may serve as a diagnostic tool for subclinical mastitis in cows without obvious clinical signs.


Assuntos
Mastite Bovina/diagnóstico , Leite/química , Proteína S100A12/análise , Animais , Bovinos , China , Cloretos/análise , Indústria de Laticínios , Feminino , Concentração de Íons de Hidrogênio , Leite/citologia , Potássio/análise , RNA Mensageiro , Reação em Cadeia da Polimerase em Tempo Real , Sódio/análise
2.
Biotechnol Lett ; 38(12): 2051-2057, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27580891

RESUMO

OBJECTIVES: To evaluate four 5'-UTRs on GFP expression in HEK293T cells. RESULTS: The recombinant plasmids were constructed by restriction enzyme digestion, digestion and DNA sequencing. Quantitative real-time PCR and western blotting results showed that the transcription and translation level of PPRV-GFP mRNA was significantly lower than that of the other reporters. The transcription and translation level of ChEF1-GFP was the highest in HEK293T cells. CONCLUSIONS: Different UTRs can significantly affect protein expression. Additionally, the findings also will be useful in biological applications that require tuning of gene expression and system optimization.


Assuntos
Regiões 5' não Traduzidas/genética , Expressão Gênica/genética , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos
3.
Exp Ther Med ; 19(3): 2149-2154, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32104278

RESUMO

Trefoil factor 3 (TFF3) is involved in cell adhesion, motility and apoptosis, regulates mucosal immunity and maintains the functional integrity of intestinal epithelia. The upregulation of TFF3 expression in the weaning rat intestine attracted our interest. The present study hypothesized that TFF3 may serve a role in preventing diarrhea in weaning piglets, which is an important consideration in the pig farming industry. Previous recombinant TFF3 protein expression yields obtained from Escherichia coli were too low and the bioactivity of the protein was poor. Hence, this expression system was unsuitable for industrial applications. The present study explored the production of recombinant sus scrofa TFF3 in a Brevibacillus choshinensis (B. choshinensis) expression system, aiming to enhance the expression level of bioactive protein. To achieve this, the sus scrofa TFF3-encoding gene fragment was fused into an E. coli-Brevibacillus shuttle vector pNCMO2. High levels of TFF3 (30 mg/l) were produced and secreted into the B. choshinensis culture medium in soluble form with a molecular mass of 13.6 kDa and high immunoreactivity in western blotting. Thus, Brevibacillus may be used to produce useful mucosal factors for biochemical analyses and mucosal protection, and in industrial applications to produce novel inhibitors of diarrhea.

4.
Res Vet Sci ; 118: 395-402, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29684816

RESUMO

Subacute ruminal acidosis (SARA) can cause rapid lipopolysaccharide (LPS) elevation and milk yield decline in lactating ruminants. LPS has been shown to promote apoptosis and reduce the proliferation of mammary epithelial cells. Previous studies have shown that γ- amino butyric acid (GABA) can enhance production performance, regulating ß-cell apoptosis and proliferation. Whether GABA can regulate apoptosis and proliferation induced by LPS in mammary epithelial cells is unknown. In this paper, we detected the role of GABA on proliferation and apoptosis as well as inflammation induced by LPS in bovine mammary epithelial cells (MAC-T cell line). In addition, we explored the role mechanism of GABA in LPS-induced MAC-T cells response through detecting the NFκB signaling pathway key molecules. The results suggested that GABA reduced the effects of cell apoptosis induced by LPS. Furthermore, GABA inhibited the expression of inflammatory cytokines activated by LPS. More importantly, blocking GABA receptors with its antagonist, GABA could not reduce the expression of inflammatory and pro-apoptotic factors activated by LPS. Notably, GABA significantly decreased the TLR4, NFκB p65, and MyD88 mRNA expression levels that were elevated by LPS. Our data indicated that GABA can improve cell viability and decrease apoptosis induced by LPS, while exerting an anti-inflammatory effect through the NFκB signaling pathway.


Assuntos
Apoptose , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like , Ácido gama-Aminobutírico/fisiologia , Animais , Bovinos , Proliferação de Células , Feminino , Regulação da Expressão Gênica , Lactação , NF-kappa B , Linfócitos T
5.
Oncotarget ; 8(37): 61958-61968, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28977918

RESUMO

To explore the role of IRF3/IRF7 during inflammatory responses, we investigated the effects of swine IRF3/IRF7 on TLR4 signaling pathway and inflammatory factors expression in porcine kidney epithelial PK15 cell lines. We successfully constructed eukaryotic vectors PB-IRF3 and PB-IRF7, transfected these vectors into PK15 cells and observed GFP under a fluorescence microscope. In addition, RT-PCR was also used to detect transfection efficiency. We found that IRF3/IRF7 was efficiently overexpressed in PK15 cells. Moreover, we evaluated the effects of IRF3/IRF7 on the TLR4 signaling pathway and inflammatory factors by RT-PCR. Transfected cells were treated with lipopolysaccharide (LPS) alone, or in combination with a TBK1 inhibitor (LiCl). We revealed that IRF3/IRF7 enhanced IFNα production, and decreased IL-6 mRNA expression. Blocking the TBK1 pathway, inhibited the changes in IFNα, but not IL-6 mRNA. This illustrated that IRF3/IRF7 enhanced IFNα production through TLR4/TBK1 signaling pathway and played an anti-inflammatory role, while IRF3/IRF7 decreased IL-6 expression independent of the TBK1 pathway. Trends in MyD88, TRAF6, TBK1 and NFκB mRNA variation were similar in all treatments. LPS increased MyD88, TRAF6, TBK1 and NFκB mRNA abundance in PBR3/PBR7 and PBv cells, while LiCl blocked the LPS-mediated effects. The levels of these four factors in PBR3/PBR7 cells were higher than those in PBv. These results demonstrated that IRF3/IRF7 regulated the inflammatory response through the TLR4 signaling pathway. Overexpression of swine IRF3/IRF7 in PK15 cells induced type I interferons production, and attenuated inflammatory responses through TLR4 signaling pathway.

6.
Oncotarget ; 8(43): 73579-73589, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-29088728

RESUMO

IFITM3 is involved in cell adhesion, apoptosis, immune, and antivirus activity. Furthermore, IFITM3 gene has been considered as a preferential marker for inflammatory diseases, and positive correlation to pathological grades. Therefore, we assumed that IFITM3 was regulated by different signal pathways. To better understand IFITM3 function in inflammatory response, we cloned swine IFITM3 gene, and detected IFITM3 distribution in tissues, as well as characterized this gene. Results indicated that the length of swine IFITM3 gene was 438 bp, encoding 145 amino acids. IFITM3 gene expression abundance was higher in spleen and lungs. Moreover, we next constructed the eukaryotic expression vector PBIFM3 and transfected into PK15 cells, finally obtained swine IFITM3 gene stable expression cell line. Meanwhile, we explored the effects of LPS on swine IFITM3 expression. Results showed that LPS increased IFITM3 mRNA abundance and exhibited time-dependent effect for LPS treatment. To further demonstrate the mechanism that IFITM3 regulated type I IFNs production, we also detected the important molecules expression of TLR4 signaling pathway. In transfected and non-transfected IFITM3 PK15 cells, LPS exacerbated the relative expression of TLR4-NFκB signaling molecules. However, the IFITM3 overexpression suppressed the inflammatory development of PK15 cells. In conclusion, these data indicated that the overexpression of swine IFITM3 could decrease the inflammatory response through TLR4 signaling pathway, and participate in type I interferon production. These findings may lead to an improved understanding of the biological function of IFITM3 in inflammation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa