Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cell ; 147(5): 1171-85, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22118469

RESUMO

We present the draft 273 Mb genome of the migratory monarch butterfly (Danaus plexippus) and a set of 16,866 protein-coding genes. Orthology properties suggest that the Lepidoptera are the fastest evolving insect order yet examined. Compared to the silkmoth Bombyx mori, the monarch genome shares prominent similarity in orthology content, microsynteny, and protein family sizes. The monarch genome reveals a vertebrate-like opsin whose existence in insects is widespread; a full repertoire of molecular components for the monarch circadian clockwork; all members of the juvenile hormone biosynthetic pathway whose regulation shows unexpected sexual dimorphism; additional molecular signatures of oriented flight behavior; microRNAs that are differentially expressed between summer and migratory butterflies; monarch-specific expansions of chemoreceptors potentially important for long-distance migration; and a variant of the sodium/potassium pump that underlies a valuable chemical defense mechanism. The monarch genome enhances our ability to better understand the genetic and molecular basis of long-distance migration.


Assuntos
Migração Animal , Borboletas/genética , Genoma de Inseto , Anotação de Sequência Molecular , Sequência de Aminoácidos , Animais , Evolução Biológica , Borboletas/fisiologia , Feminino , Voo Animal , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Masculino , Dados de Sequência Molecular , Mariposas/genética , Neuropeptídeos/química , Neuropeptídeos/genética , Filogenia , Alinhamento de Sequência , Olfato
2.
Proc Natl Acad Sci U S A ; 120(30): e2303327120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37467272

RESUMO

Diverse ß-carboline (ßC) alkaloids are produced by microbes, plants, and animals with myriad bioactivities and drug potentials. However, the biosynthetic mechanism of ßCs remains largely elusive, especially regarding the hydroxyl and glucosyl modifications of ßCs. Here, we report the presence of the bacterial-like Pictet-Spenglerase gene Fcs1 in the entomopathogenic Beauveria fungi that can catalyze the biosynthesis of the ßC skeleton. The overexpression of Fcs1 in Beauveria bassiana led to the identification of six ßC methyl glycosides, termed bassicarbosides (BCSs) A-F. We verified that the cytochrome P450 (CYP) genes adjacent to Fcs1 cannot oxidize ßCs. Alternatively, the separated CYP684B2 family gene Fcs2 was identified to catalyze ßC hydroxylation together with its cofactor gene Fcs3. The functional homologue of Fcs2 is only present in the Fcs1-containing fungi and highly similar to the Fcs1-connected yet nonfunctional CYP. Both evolved quicker than those from fungi without Fcs1 homologues. Finally, the paired methyl/glucosyl transferase genes were verified to mediate the production of BCSs from hydroxy-ßCs. All these functionally verified genes are located on different chromosomes of Beauveria, which is in contrast to the typical content-clustered feature of fungal biosynthetic gene clusters (BGCs). We also found that the production of BCSs selectively contributed to fungal infection of different insect species. Our findings shed light on the biosynthetic mechanism of ßC glycosides, including the identification of a ßC hydroxylase. The results of this study also propose an evolving process of fungal BGC formation following the horizontal transfer of a bacterial gene to fungi.


Assuntos
Alcaloides , Beauveria , Animais , Carbolinas , Sistema Enzimático do Citocromo P-450/genética , Família Multigênica , Fungos/genética , Beauveria/genética
3.
PLoS Genet ; 16(6): e1008622, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32520935

RESUMO

Insect courtship and mating depend on integration of olfactory, visual, and tactile cues. Compared to other insects, Bombyx mori, the domesticated silkworm, has relatively simple sexual behaviors as it cannot fly. Here by using CRISPR/Cas9 and electrophysiological techniques we found that courtship and mating behaviors are regulated in male silk moths by mutating genes in the sex determination cascade belonging to two conserved pathways. Loss of Bmdsx gene expression significantly reduced the peripheral perception of the major pheromone component bombykol by reducing expression of the product of the BmOR1 gene which completely blocked courtship in adult males. Interestingly, we found that mating behavior was regulated independently by another sexual differentiation gene, Bmfru. Loss of Bmfru completely blocked mating, but males displayed normal courtship behavior. Lack of Bmfru expression significantly reduced the perception of the minor pheromone component bombykal due to the down regulation of BmOR3 expression; further, functional analysis revealed that loss of the product of BmOR3 played a key role in terminating male mating behavior. Our results suggest that Bmdsx and Bmfru are at the base of the two primary pathways that regulate olfactory-based sexual behavior.


Assuntos
Bombyx/genética , Genes de Insetos , Preferência de Acasalamento Animal , Atrativos Sexuais/metabolismo , Processos de Determinação Sexual/genética , Animais , Bombyx/metabolismo , Bombyx/fisiologia , Feminino , Masculino , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo , Atrativos Sexuais/genética , Olfato
4.
Genes Dev ; 29(7): 760-71, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25838544

RESUMO

Unlike typical cis-splicing, trans-splicing joins exons from two separate transcripts to produce chimeric mRNA and has been detected in most eukaryotes. Trans-splicing in trypanosomes and nematodes has been characterized as a spliced leader RNA-facilitated reaction; in contrast, its mechanism in higher eukaryotes remains unclear. Here we investigate mod(mdg4), a classic trans-spliced gene in Drosophila, and report that two critical RNA sequences in the middle of the last 5' intron, TSA and TSB, promote trans-splicing of mod(mdg4). In TSA, a 13-nucleotide (nt) core motif is conserved across Drosophila species and is essential and sufficient for trans-splicing, which binds U1 small nuclear RNP (snRNP) through strong base-pairing with U1 snRNA. In TSB, a conserved secondary structure acts as an enhancer. Deletions of TSA and TSB using the CRISPR/Cas9 system result in developmental defects in flies. Although it is not clear how the 5' intron finds the 3' introns, compensatory changes in U1 snRNA rescue trans-splicing of TSA mutants, demonstrating that U1 recruitment is critical to promote trans-splicing in vivo. Furthermore, TSA core-like motifs are found in many other trans-spliced Drosophila genes, including lola. These findings represent a novel mechanism of trans-splicing, in which RNA motifs in the 5' intron are sufficient to bring separate transcripts into close proximity to promote trans-splicing.


Assuntos
Drosophila/genética , Splicing de RNA/genética , RNA Nuclear Pequeno/genética , Trans-Splicing/genética , Motivos de Aminoácidos , Animais , Sequência Conservada/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Íntrons/genética , Proteínas de Ligação a RNA/genética
5.
Proc Natl Acad Sci U S A ; 116(28): 14331-14338, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31221756

RESUMO

Insects have evolved effectors to conquer plant defense. Most known insect effectors are isolated from sucking insects, and examples from chewing insects are limited. Moreover, the targets of insect effectors in host plants remain unknown. Here, we address a chewing insect effector and its working mechanism. Cotton bollworm (Helicoverpa armigera) is a lepidopteran insect widely existing in nature and severely affecting crop productivity. We isolated an effector named HARP1 from H. armigera oral secretion (OS). HARP1 was released from larvae to plant leaves during feeding and entered into the plant cells through wounding sites. Expression of HARP1 in Arabidopsis mitigated the global expression of wounding and jasmonate (JA) responsive genes and rendered the plants more susceptible to insect feeding. HARP1 directly interacted with JASMONATE-ZIM-domain (JAZ) repressors to prevent the COI1-mediated JAZ degradation, thus blocking JA signaling transduction. HARP1-like proteins have conserved function as effectors in noctuidae, and these types of effectors might contribute to insect adaptation to host plants during coevolution.


Assuntos
Gossypium/genética , Interações Hospedeiro-Parasita/genética , Mariposas/patogenicidade , Doenças das Plantas/genética , Animais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Ciclopentanos/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/genética , Gossypium/crescimento & desenvolvimento , Gossypium/parasitologia , Mariposas/metabolismo , Oxilipinas/metabolismo , Doenças das Plantas/parasitologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Transdução de Sinais/genética
6.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409150

RESUMO

The evolution of nature created delicate structures and organisms. With the advancement of technology, especially the rise of additive manufacturing, bionics has gradually become a popular research field. Recently, researchers have concentrated on soft robotics, which can mimic the complex movements of animals by allowing continuous and often responsive local deformations. These properties give soft robots advantages in terms of integration and control with human tissue. The rise of additive manufacturing technologies and soft matters makes the fabrication of soft robots with complex functions such as bending, twisting, intricate 3D motion, grasping, and stretching possible. In this paper, the advantages and disadvantages of the additive manufacturing process, including fused deposition modeling, direct ink writing, inkjet printing, stereolithography, and selective laser sintering, are discussed. The applications of 3D printed soft matter in bionics, soft robotics, flexible electronics, and biomedical engineering are reviewed.


Assuntos
Impressão Tridimensional , Robótica , Animais , Eletrônica
7.
Mol Biol Evol ; 36(11): 2548-2556, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31397867

RESUMO

Cholesterol plays essential roles in animal development and disease progression. Here, we characterize the evolutionary pattern of the canonical cholesterol biosynthesis pathway (CBP) in the animal kingdom using both genome-wide analyses and functional experiments. CBP genes in the basal metazoans were inherited from their last common eukaryotic ancestor and evolutionarily conserved for cholesterol biosynthesis. The genomes of both the basal metazoans and deuterostomes retain almost the full set of CBP genes, while Cnidaria and many protostomes have independently experienced multiple massive losses of CBP genes that might be due to the geologic events during the Ediacaran period, such as the appearance of an exogenous sterol supply and the frequent perturbation of ocean oxygenation. Meanwhile, the indispensable utilization processes of cholesterol potentially strengthened the maintenance of the complete set of CBP genes in vertebrates. These results strengthen both biotic and abiotic roles in the macroevolution of a biosynthesis pathway in animals.

8.
Nature ; 514(7522): 317-21, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25274300

RESUMO

The monarch butterfly, Danaus plexippus, is famous for its spectacular annual migration across North America, recent worldwide dispersal, and orange warning colouration. Despite decades of study and broad public interest, we know little about the genetic basis of these hallmark traits. Here we uncover the history of the monarch's evolutionary origin and global dispersal, characterize the genes and pathways associated with migratory behaviour, and identify the discrete genetic basis of warning colouration by sequencing 101 Danaus genomes from around the globe. The results rewrite our understanding of this classic system, showing that D. plexippus was ancestrally migratory and dispersed out of North America to occupy its broad distribution. We find the strongest signatures of selection associated with migration centre on flight muscle function, resulting in greater flight efficiency among migratory monarchs, and that variation in monarch warning colouration is controlled by a single myosin gene not previously implicated in insect pigmentation.


Assuntos
Migração Animal , Borboletas/genética , Borboletas/fisiologia , Pigmentação/genética , Pigmentação/fisiologia , Asas de Animais/metabolismo , Animais , Evolução Biológica , Colágeno Tipo IV/metabolismo , Feminino , Voo Animal , Masculino , Camundongos , Músculos/fisiologia , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , América do Norte , Fenótipo , Seleção Genética
9.
Bull Entomol Res ; 110(6): 684-693, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32741378

RESUMO

For a wide range of insect species, the microbiota has potential roles in determining host developmental programme, immunity and reproductive biology. The tea geometrid moths Ectropis obliqua and E. grisescens are two closely related species that mainly feed on tea leaves. Although they can mate, infertile hybrids are produced. Therefore, these species provide a pair of model species for studying the molecular mechanisms of microbiotal involvement in host reproductive biology. In this study, we first identified and compared the compositions of microbiota between these sibling species, revealing higher microbiotal diversity for E. grisescens. The microbiota of E. obliqua mainly comprised the phyla Firmicutes, Proteobacteria and Cyanobacteria, whereas that of E. grisescens was dominated by Proteobacteria, Actinobacteria and Firmicutes. At the genus level, the dominant microbiota of E. grisescens included Wolbachia, Enterobacter and Pseudomonas and that of E. obliqua included Melissococcus, Staphylococcus and Enterobacter. Furthermore, we verified the rate of Wolbachia to infect 80 samples from eight different geographical populations, and the results supported that only E. grisescens harboured Wolbachia. Taken together, our findings indicate significantly different microbiotal compositions for E. obliqua and E. grisescens, with Wolbachia possibly being a curial factor influencing the reproductive isolation of these species. This study provides new insight into the mechanisms by which endosymbiotic bacteria, particularly Wolbachia, interact with sibling species.


Assuntos
Microbiota , Mariposas/microbiologia , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Feminino , Masculino , Isolamento Reprodutivo , Simbiose
10.
Int Heart J ; 61(4): 806-814, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32728001

RESUMO

This study aimed to explore the function of miR-24 in hypoxia/reoxygenation (H/R) -induced cardiomyocyte injury.We constructed a cardiomyocyte model of H/R using the primary cardiomyocytes isolated from Sprague-Dawley rats. To explore the role of miR-24, cells were transfected with a miR-24 mimic or miR-24 inhibitor. The RNA expression levels of miR-24 and Mapk14 were determined using qRT-PCR. The proliferation and apoptosis of cells were determined using a CCK8 assay and a flow cytometer. The TargetScan website was used to predict the targets of miR-24. A dual-luciferase reporter gene assay was conducted to verify whether Mapk14 is indeed a target of miR-24. A Western blot was applied for protein detection.H/R exposure decreased the expression of miR-24 in rat cardiomyocytes. Transfection of the miR-24 mimic into cardiomyocytes reduced H/R-induced injury as evidenced by an increase in proliferation and a decrease in the apoptotic rate. By contrast, transfection of the miR-24 inhibitor aggravated H/R-induced injury. The expression of Bcl-2 was increased while the levels of Bax and Active-caspase 3 were reduced in the H/R+miR-24 mimic group compared to those in the H/R group. H/R+miR-24 inhibitor group showed the opposite results. Mapk14 was identified as a target of miR-24. The mRNA level of Mapk14 and its protein (p38 MAPK) level were negatively affected by miR-24. Furthermore, we discovered that depletion of Mapk14 reduced the promoting effect of the miR-24 inhibitor on cell apoptosis.Overall, our results illustrated that miR-24 could attenuate H/R-induced injury partly by regulating Mapk14.


Assuntos
Hipóxia/metabolismo , MicroRNAs/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Apoptose/fisiologia , Caspase 3/metabolismo , Genes Reporter/genética , Genes bcl-2/genética , Humanos , Ratos , Ratos Sprague-Dawley , Transfecção/métodos , Proteína X Associada a bcl-2/metabolismo
11.
BMC Genomics ; 18(1): 668, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28854898

RESUMO

BACKGROUND: Ascomycete Cordyceps species have been using as valued traditional Chinese medicines. Particularly, the fruiting bodies of Cordyceps cicadae (syn. Isaria cicadae) have long been utilized for the treatment of chronic kidney disease. However, the genetics and bioactive chemicals in this fungus have been largely unexplored. RESULTS: In this study, we performed comprehensive omics analyses of C. cicadae, and found that, in contrast to other Cordyceps fungi, C. cicadae produces asexual fruiting bodies with the production of conidial spores instead of the meiotic ascospores. Genome sequencing and comparative genomic analysis indicate that the protein families encoded by C. cicadae are typical of entomopathogenic fungi, including the expansion of proteases and chitinases for targeting insect hosts. Interestingly, we found that the MAT1-2 mating-type locus of the sequenced strain contains an abnormally truncated MAT1-1-1 gene. Gene deletions revealed that asexual fruiting of C. cicadae is independent of the MAT locus control. RNA-seq transcriptome data also indicate that, compared to growth in a liquid culture, the putative genes involved in mating and meiosis processes were not up-regulated during fungal fruiting, further supporting asexual reproduction in this fungus. The genome of C. cicadae encodes an array of conservative and divergent gene clusters for secondary metabolisms. Based on our analysis, the production of known carcinogenic metabolites by this fungus could be potentially precluded. However, the confirmed production of oosporein raises health concerns about the frequent consumption of fungal fruiting bodies. CONCLUSIONS: The results of this study expand our knowledge of fungal genetics that asexual fruiting can occur independent of the MAT locus control. The obtained genomic and metabolomic data will benefit future investigations of this fungus for medicinal uses.


Assuntos
Cordyceps/genética , Cordyceps/metabolismo , Carpóforos/genética , Perfilação da Expressão Gênica , Metabolômica , Cordyceps/crescimento & desenvolvimento , Cordyceps/fisiologia , Evolução Molecular , Carpóforos/crescimento & desenvolvimento , Deleção de Genes , Loci Gênicos/genética , Família Multigênica/genética , Filogenia , Reprodução Assexuada/genética , Sintenia
12.
Proc Natl Acad Sci U S A ; 111(47): 16796-801, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25368161

RESUMO

Much remains unknown regarding speciation. Host-pathogen interactions are a major driving force for diversification, but the genomic basis for speciation and host shifting remains unclear. The fungal genus Metarhizium contains species ranging from specialists with very narrow host ranges to generalists that attack a wide range of insects. By genomic analyses of seven species, we demonstrated that generalists evolved from specialists via transitional species with intermediate host ranges and that this shift paralleled insect evolution. We found that specialization was associated with retention of sexuality and rapid evolution of existing protein sequences whereas generalization was associated with protein-family expansion, loss of genome-defense mechanisms, genome restructuring, horizontal gene transfer, and positive selection that accelerated after reinforcement of reproductive isolation. These results advance understanding of speciation and genomic signatures that underlie pathogen adaptation to hosts.


Assuntos
Adaptação Fisiológica , Genômica , Interações Hospedeiro-Patógeno , Metarhizium/classificação , Elementos de DNA Transponíveis , Metarhizium/genética , Dados de Sequência Molecular , Filogenia
13.
Nucleic Acids Res ; 41(Database issue): D758-63, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23143105

RESUMO

The monarch butterfly (Danaus plexippus) is emerging as a model organism to study the mechanisms of circadian clocks and animal navigation, and the genetic underpinnings of long-distance migration. The initial assembly of the monarch genome was released in 2011, and the biological interpretation of the genome focused on the butterfly's migration biology. To make the extensive data associated with the genome accessible to the general biological and lepidopteran communities, we established MonarchBase (available at http://monarchbase.umassmed.edu). The database is an open-access, web-available portal that integrates all available data associated with the monarch butterfly genome. Moreover, MonarchBase provides access to an updated version of genome assembly (v3) upon which all data integration is based. These include genes with systematic annotation, as well as other molecular resources, such as brain expressed sequence tags, migration expression profiles and microRNAs. MonarchBase utilizes a variety of retrieving methods to access data conveniently and for integrating biological interpretations.


Assuntos
Borboletas/genética , Bases de Dados Genéticas , Genoma de Inseto , Animais , Genômica , Internet , Anotação de Sequência Molecular , Software
14.
Elife ; 132024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904661

RESUMO

The success of an organism depends on the molecular and ecological adaptations that promote its beneficial fitness. Parasitoids are valuable biocontrol agents for successfully managing agricultural pests, and they have evolved diversified strategies to adapt to both the physiological condition of hosts and the competition of other parasitoids. Here, we deconstructed the parasitic strategies in a highly successful parasitoid, Trichopria drosophilae, which parasitizes a broad range of Drosophila hosts, including the globally invasive species D. suzukii. We found that T. drosophilae had developed specialized venom proteins that arrest host development to obtain more nutrients via secreting tissue inhibitors of metalloproteinases (TIMPs), as well as a unique type of cell-teratocytes-that digest host tissues for feeding by releasing trypsin proteins. In addition to the molecular adaptations that optimize nutritional uptake, this pupal parasitoid has evolved ecologically adaptive strategies including the conditional tolerance of intraspecific competition to enhance parasitic success in older hosts and the obligate avoidance of interspecific competition with larval parasitoids. Our study not only demystifies how parasitoids weaponize themselves to colonize formidable hosts but also provided empirical evidence of the intricate coordination between the molecular and ecological adaptations that drive evolutionary success.


Assuntos
Adaptação Fisiológica , Drosophila , Interações Hospedeiro-Parasita , Vespas , Animais , Vespas/fisiologia , Drosophila/parasitologia , Pupa/parasitologia , Larva/parasitologia , Larva/metabolismo
15.
Adv Mater ; 36(27): e2314050, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38380790

RESUMO

Self-charging zinc batteries that combine energy harvesting technology with batteries are candidates for reliable self-charging power systems. However, the lack of rational materials design results in unsatisfactory self-charging performance. Here, a covalent organic framework containing pyrene-4,5,9,10-tetraone groups (COF-PTO) is reported as a cathode material for aqueous self-charging zinc batteries. The ordered channel structure of the COF-PTO provides excellent capacity retention of 98% after 18 000 cycles at 10 A g-1 and ultra-fast ion transfer. To visually assess the self-charging performance, two parameters, namely self-charging efficiency (self-charging discharge capacity/galvanostatic discharge capacity, η) and average self-charging rate (total discharge capacity after cyclic self-charging/total cyclic self-charging time, ν), are proposed for performance evaluation. COF-PTO achieves an impressive η of 96.9% and an ν of 30 mAh g-1 self-charge capacity per hour in 100 self-charging cycles, surpassing the previous reports. Mechanism studies reveal the co-insertion of Zn2+ and H+ double ions in COF-PTO of self-charging zinc batteries. In addition, the C═N and C═O (on the benzene) in COF-PTO are ortho structures to each other, which can easily form metal heterocycles with Zn ions, thereby driving the forward progress of the self-charging reaction and enhancing the self-charging performance.

16.
Sci Adv ; 10(17): eadk3852, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657063

RESUMO

Many insect pests, including the brown planthopper (BPH), undergo windborne migration that is challenging to observe and track. It remains controversial about their migration patterns and largely unknown regarding the underlying genetic basis. By analyzing 360 whole genomes from around the globe, we clarify the genetic sources of worldwide BPHs and illuminate a landscape of BPH migration showing that East Asian populations perform closed-circuit journeys between Indochina and the Far East, while populations of Malay Archipelago and South Asia undergo one-way migration to Indochina. We further find round-trip migration accelerates population differentiation, with highly diverged regions enriching in a gene desert chromosome that is simultaneously the speciation hotspot between BPH and related species. This study not only shows the power of applying genomic approaches to demystify the migration in windborne migrants but also enhances our understanding of how seasonal movements affect speciation and evolution in insects.


Assuntos
Migração Animal , Genômica , Vento , Animais , Genômica/métodos , Hemípteros/genética , Genoma de Inseto , Genética Populacional
17.
Development ; 137(23): 4083-90, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21062865

RESUMO

The pigmentation of insects has served as an excellent model for the study of morphological trait evolution and developmental biology. The melanism (mln) mutant of the silkworm Bombyx mori is notable for its strong black coloration, phenotypic differences between larval and adult stages, and its widespread use in strain selection. Here, we report the genetic and molecular bases for the formation of the mln morphological trait. Fine mapping revealed that an arylalkylamine N-acetyltransferase (AANAT) gene co-segregates with the black coloration patterns. Coding sequence variations and expression profiles of AANAT are also associated with the melanic phenotypes. A 126 bp deletion in the mln genome causes two alternatively spliced transcripts with premature terminations. An enzymatic assay demonstrated the absolute loss of AANAT activity in the mutant proteins. We also performed RNA interference of AANAT in wild-type pupae and observed a significant proportion of adults with ectopic black coloration. These findings indicate that functional deletion of this AANAT gene accounts for the mln mutation in silkworm. AANAT is also involved in a parallel melanin synthesis pathway in which ebony plays a role, whereas no pigmentation defect has been reported in the Drosophila model or in other insects to date. To the best of our knowledge, the mln mutation is the first characterized mutant phenotype of insects with AANAT, and this result contributes to our understanding of dopamine metabolism and melanin pattern polymorphisms.


Assuntos
Arilalquilamina N-Acetiltransferase/genética , Bombyx/enzimologia , Bombyx/genética , Deleção de Genes , Genes de Insetos/genética , Pigmentação/genética , Animais , Sequência de Bases , Cromossomos de Insetos/genética , Loci Gênicos/genética , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Fenótipo , Filogenia , Mapeamento Físico do Cromossomo , Interferência de RNA , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA
18.
J Med Chem ; 66(22): 15205-15229, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37943013

RESUMO

Psoriasis, a prevalent chronic skin disorder, remains a significant therapeutic obstacle. This study centers on rho-associated coiled-coil-containing kinase2 (ROCK2) as an advantageous target for treating psoriasis and identifies five potent and selective ROCK2 inhibitors (A31-35). Notably, A32-35 outperform KD025 in ROCK2/ROCK1 selectivity by up to 216-fold. Among these candidates, A31 emerged as an exceedingly promising molecule, showcasing remarkable inhibitory potency (IC50 = 3.7 ± 0.8 nM), 19-fold ROCK2/ROCK1 selectivity, and favorable pharmacokinetics. Insights from the binding mode study further underscored the pivotal role of interactions with Phe103 on the P-loop in determining the selectivity between ROCK1 and ROCK2. In an imiquimod-induced psoriasis-like mouse model, oral administration of A31 notably ameliorated symptoms by targeting the IL-23/Th17 axis. Based on these compelling findings, A31 was selected as a highly promising compound for further investigation as a potential treatment for psoriasis.


Assuntos
Psoríase , Animais , Camundongos , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Quinases Associadas a rho
19.
Insect Sci ; 30(4): 947-963, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35811567

RESUMO

Black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), is a prominent insect for the bioconversion of various organic wastes. As a saprotrophic insect, the BSF inhabits microbe-rich environments. However, the influences of the intestinal microorganisms on BSF growth and development are not very clear. In this study, the dynamics of the intestinal bacterial community of BSF larvae (BSFL) were analyzed using pyrosequencing. Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria were the most prevalent bacterial phyla in the intestines of all larval instars. The dynamic changes in bacterial community compositions among different larval instars were striking at the genus level. Klebsiella, Clostridium, Providencia, and Dysgonomonas were the relatively most abundant bacteria in the 1st- to 4th-instar BSFL, respectively. Dysgonomonas and Providencia also dominated the 5th- and 6th-instar larvae, at ratios of 31.1% and 47.2%, respectively. In total, 148 bacterial strains affiliated with 20 genera were isolated on different media under aerobic and anaerobic conditions. Among them, 6 bacteria, BSF1-BSF6, were selected for further study. The inoculation of the 6 isolates independently into germ-free BSFL feeding on an artificial diet showed that all the bacteria, except BSF4, significantly promoted BSF growth and development compared with the germ-free control. Citrobacter, Dysgonomonas, Klebsiella, Ochrobactrum, and Providencia promoted BSF development significantly by increasing the weight gains of larvae and pupae, as well as increasing the prepupae and eclosion rates. In addition, Citrobacter, Klebsiella and Providencia shortened the BSF life cycle significantly. The results illustrate the promotive effects of intestinal bacteria on BSF growth and development.


Assuntos
Dípteros , Animais , Larva , Bactérias , Dieta , Bacteroidetes
20.
Sci Rep ; 13(1): 1134, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670120

RESUMO

Based on engineering background that local heating of coal seam is uneven due to underground coal gasification, coal-bed gas exploitation via heat injection, spontaneous combustion of coal seam, etc., segmented heating coal sample was used to simulate coal seam under uneven heating condition, and experimental study on mechanical behaviors of coal sample after segmented heat treatment at high temperatures was conducted. Test results show that temperature at 100 °C ~ 400 °C did not reach ignition temperature of deep hard coal for the experiment and was not enough to change main ingredients of coal sample, which less affected compression strength, elastic modulus, acoustic emission behavior of coal sample. Although compaction stage-elastic stage-plastic stage-broken stage appeared in compression stress-strain curve of coal sample, height increase led to decrease of compression strength, elastic modulus of coal sample, cumulative amplitude and ringing count for acoustic emission in the form of power function. Meanwhile, it is found that final failure modes of coal sample after segmented heat were mainly shear failure and separation failure and friction mixed failure was secondary. In addition, influence of heating temperature at 100 °C ~ 400 °C on failure modes of coal sample was small. However, height increase in the heating section of coal sample made shear failure surface gradually move to the heating section and separation failure surface moved with the change of contact surface position between heating section and non-heating section. Furthermore, the integral failure degree of coal sample was more serious. Finally, based on variation behaviors of acoustic emission parameter for coal sample after segmented heating, inversion formula on acoustic emission parameter for strength of coal sample was discussed and verified via experimental result of coal sample with different segmented heat height after heating treatment at 200 °C.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa