RESUMO
The control effect of various intelligent terminals is affected by the data sensing precision. The filtering method has been the typical soft computing method used to promote the sensing level. Due to the difficult recognition of the practical system and the empirical parameter estimation in the traditional Kalman filter, a neuron-based Kalman filter was proposed in the paper. Firstly, the framework of the improved Kalman filter was designed, in which the neuro units were introduced. Secondly, the functions of the neuro units were excavated with the nonlinear autoregressive model. The neuro units optimized the filtering process to reduce the effect of the unpractical system model and hypothetical parameters. Thirdly, the adaptive filtering algorithm was proposed based on the new Kalman filter. Finally, the filter was verified with the simulation signals and practical measurements. The results proved that the filter was effective in noise elimination within the soft computing solution.
RESUMO
Algal bloom is a typical phenomenon of the eutrophication of rivers and lakes and makes the water dirty and smelly. It is a serious threat to water security and public health. Most scholars studying solutions for this pollution have studied the principles of remediation approaches, but few have studied the decision-making and selection of the approaches. Existing research uses simplex decision-making information which is highly subjective and uses little of the data from water quality sensors. To utilize these data and solve the rational decision-making problem, a novel group decision-making method is proposed using the sensor data with fuzzy evaluation information. Firstly, the optimal similarity aggregation model of group opinions is built based on the modified similarity measurement of Vague values. Secondly, the approaches' ability to improve the water quality indexes is expressed using Vague evaluation methods. Thirdly, the water quality sensor data are analyzed to match the features of the alternative approaches with grey relational degrees. This allows the best remediation approach to be selected to meet the current water status. Finally, the selection model is applied to the remediation of algal bloom in lakes. The results show this method's rationality and feasibility when using different data from different sources.
RESUMO
In this article, the tracking problem of networked discrete-time second-order nonlinear multiagent systems (MASs) is studied. First, for the MASs without communication delay, a novel method, called distributed model-free sliding-mode control algorithm is proposed, which can make the system converge quickly without the accurate model. Furthermore, for the MASs with delay, in order to eliminate the influence of time delay on the system, a distributed model-free sliding-mode predictive control strategy based on time-delay compensation technology is proposed, which can actively compensate for time delay while ensuring system stability and consensus tracking performance requirements. Both the simulation and experiment results reveal the superiority of the proposed methods.