Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(9): 2288-2304.e27, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38565142

RESUMO

Taurine is used to bolster immunity, but its effects on antitumor immunity are unclear. Here, we report that cancer-related taurine consumption causes T cell exhaustion and tumor progression. The taurine transporter SLC6A6 is correlated with aggressiveness and poor outcomes in multiple cancers. SLC6A6-mediated taurine uptake promotes the malignant behaviors of tumor cells but also increases the survival and effector function of CD8+ T cells. Tumor cells outcompete CD8+ T cells for taurine by overexpressing SLC6A6, which induces T cell death and malfunction, thereby fueling tumor progression. Mechanistically, taurine deficiency in CD8+ T cells increases ER stress, promoting ATF4 transcription in a PERK-JAK1-STAT3 signaling-dependent manner. Increased ATF4 transactivates multiple immune checkpoint genes and induces T cell exhaustion. In gastric cancer, we identify a chemotherapy-induced SP1-SLC6A6 regulatory axis. Our findings suggest that tumoral-SLC6A6-mediated taurine deficiency promotes immune evasion and that taurine supplementation reinvigorates exhausted CD8+ T cells and increases the efficacy of cancer therapies.


Assuntos
Linfócitos T CD8-Positivos , Glicoproteínas de Membrana , Taurina , Taurina/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Estresse do Retículo Endoplasmático , Fator 4 Ativador da Transcrição/metabolismo , Transdução de Sinais , Feminino , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Fator de Transcrição STAT3/metabolismo
2.
J Immunol ; 212(11): 1714-1721, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38598411

RESUMO

Ag-specific effector CD4+ T cells play a crucial role in defending against exogenous pathogens. However, the mechanisms governing the differentiation and function of IFN-γ-producing effector CD4+ Th1 cells in immune responses remain largely unknown. In this study, we elucidated the pivotal role of zinc finger protein 335 (Zfp335) in regulating effector Th1 cell differentiation and survival during acute bacterial infection. Mice with Zfp335 knockout in OT-II cells exhibited impaired Ag-specific CD4+ T cell expansion accompanied by a significant reduction in resistance to Listeria infection. Furthermore, Zfp335 deficiency restricted the effector CD4+ Th1 cell population and compromised their survival upon Listeria challenge. The expression of T-bet and IFN-γ was accordingly decreased in Zfp335-deficient Th1 cells. Mechanistically, Zfp335 directly bound to the promoter region of the Lmna gene and regulated its expression. Overexpression of Lmna was able to rescue the survival and function of Zfp335-deficient effector Th1 cells. Therefore, our study provides novel insights into the mechanisms governing effector Th1 cell differentiation and survival during acute infection.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA , Lamina Tipo A , Camundongos Knockout , Células Th1 , Fatores de Transcrição , Animais , Camundongos , Diferenciação Celular/imunologia , Diferenciação Celular/genética , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Lamina Tipo A/genética , Listeriose/imunologia , Camundongos Endogâmicos C57BL , Células Th1/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Eur J Immunol ; 54(3): e2350836, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38234007

RESUMO

T lymphocytes are pivotal in adaptive immunity. The role of the trafficking protein particle complex (TRAPPC) in regulating T-cell development and homeostasis is unknown. Using CD4cre -Trappc1flox/flox (Trappc1 cKO) mice, we found that Trappc1 deficiency in T cells significantly decreased cell number of naive T cells in the periphery, whereas thymic T-cell development in Trappc1 cKO mice was identical as WT mice. In the culture assays and mouse models with adoptive transfer of the sorted WT (CD45.1+ CD45.2+ ) and Trappc1 cKO naive T cells (CD45.2+ ) to CD45.1+ syngeneic mice, Trappc1-deficient naive T cells showed significantly reduced survival ability compared with WT cells. RNA-seq and molecular studies showed that Trappc1 deficiency in naive T cells reduced protein transport from the endoplasmic reticulum to the Golgi apparatus, enhanced unfolded protein responses, increased P53 transcription, intracellular Ca2+ , Atf4-CHOP, oxidative phosphorylation, and lipid peroxide accumulation, and subsequently led to ferroptosis. Trappc1 deficiency in naive T cells increased ferroptosis-related damage-associated molecular pattern molecules like high mobility group box 1 or lipid oxidation products like prostaglandin E2, leukotriene B4, leukotriene C4, and leukotriene D4. Functionally, the culture supernatant of Trappc1 cKO naive T cells significantly promoted neutrophils to express inflammatory cytokines like TNFα and IL-6, which was rescued by lipid peroxidation inhibitor Acetylcysteine. Importantly, Trappc1 cKO mice spontaneously developed severe autoinflammatory disease 4 weeks after birth. Thus, intrinsic expression of Trappc1 in naive T cells plays an integral role in maintaining T-cell homeostasis to avoid proinflammatory naive T-cell death-caused autoinflammatory syndrome in mice. This study highlights the importance of the TRAPPC in T-cell biology.


Assuntos
Ferroptose , Doenças Hereditárias Autoinflamatórias , Camundongos , Animais , Linfócitos T , Camundongos Knockout , Diferenciação Celular
4.
Immunity ; 44(3): 568-581, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26921109

RESUMO

Upon antigen engagement, augmented cytosolic reactive oxygen species (ROS) are needed to achieve optimal T cell receptor (TCR) signaling. However, uncontrolled ROS production is a prominent cause of necrosis, which elicits hyper-inflammation and tissue damage. Hence, it is critical to program activated T cells to achieve ROS equilibrium. Here, we determined that miR-23a is indispensable for effector CD4(+) T cell expansion, particularly by providing early protection from excessive necrosis. Mechanistically, miR-23a targeted PPIF, gatekeeper of the mitochondria permeability transition pore, thereby restricting ROS flux and maintaining mitochondrial integrity. Upon acute Listeria monocytogenes infection, deleting miR-23a in T cells resulted in excessive inflammation, massive liver damage, and a marked mortality increase, which highlights the essential role of miR-23a in maintaining immune homeostasis.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Fígado/patologia , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Animais , Células Cultivadas , Peptidil-Prolil Isomerase F , Ciclofilinas/metabolismo , Homeostase , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Necrose , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/genética
5.
J Cell Mol Med ; 28(10): e18390, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38801402

RESUMO

T cells are crucial for adaptive immunity to regulate proper immune response and immune homeostasis. T cell development occurs in the thymus and mainly differentiates into CD4+ and CD8+ T cell subsets. Upon stimulation, naive T cells differentiate into distinct CD4+ helper and CD8+ cytotoxic T cells, which mediate immunity homeostasis and defend against pathogens or tumours. Trace elements are minimal yet essential components of human body that cannot be overlooked, and they participate in enzyme activation, DNA synthesis, antioxidant defence, hormone production, etc. Moreover, trace elements are particularly involved in immune regulations. Here, we have summarized the roles of eight essential trace elements (iron, zinc, selenium, copper, iodine, chromium, molybdenum, cobalt) in T cell development, activation and differentiation, and immune response, which provides significant insights into developing novel approaches to modulate immunoregulation and immunotherapy.


Assuntos
Oligoelementos , Humanos , Oligoelementos/metabolismo , Animais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Diferenciação Celular , Selênio/metabolismo , Ativação Linfocitária/imunologia
6.
J Cell Mol Med ; 28(10): e18363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770891

RESUMO

The spleen is a vital organ for the immune system, while splenectomy may be necessary for various reasons. However, there is limited research on the impact of splenectomy on T cell function in peripheral lymph nodes as a compensatory mechanism in preventing infections. This study aimed to investigate the characteristics and function of CD8+ and CD4+ T cells in different peripheral lymph nodes during viral infection using a well-established splenectomy model. The results revealed that splenectomy caused an increase in CD8+GP33+ T cells in the mesenteric lymph nodes (MLN). Moreover, we demonstrated that splenectomy resulted in an increase of effector KLRG1+ T cells in the MLN. Additionally, the number of CD4+ cytotoxic T cells (CD4 CTLs) was also elevated in the peripheral lymph nodes of mice with splenectomy. Surprisingly, aged mice exhibited a stronger compensatory ability than adult mice, as evidenced by an increase in effector CD8+ T cells in all peripheral lymph nodes. These findings provide compelling evidence that T cells in MLN play a crucial role in protecting individuals with splenectomy against viral infections. The study offers new insights into understanding the changes in the immune system of individuals with splenectomy and highlights the potential compensatory mechanisms involved by T cells in peripheral lymph nodes.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Linfonodos , Esplenectomia , Animais , Linfonodos/imunologia , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia , Camundongos Endogâmicos C57BL , Baço/imunologia
7.
Theor Appl Genet ; 137(7): 168, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38909331

RESUMO

KEY MESSAGE: Key message Three major QTLs for resistance to downy mildew were located within an 0.78 Mb interval on chromosome 8 in foxtail millet. Downy mildew, a disease caused by Sclerospora graminicola, is a serious problem that jeopardizes the yield and quality of foxtail millet. Breeding resistant varieties represents one of the most economical and effective solutions, yet there is a lack of molecular markers related to the resistance. Here, a mapping population comprising of 158 F6:7 recombinant inbred lines (RILs) was constructed from the crossing of G1 and JG21. Based on the specific locus amplified fragment sequencing results, a high-density linkage map of foxtail millet with 1031 bin markers, spanning 1041.66 cM was constructed. Based on the high-density linkage map and the phenotype data in four environments, a total of nine quantitative trait loci (QTL) associated with resistance to downy mildew were identified. Further BSR-seq confirmed the genomic regions containing the potential candidate genes related to downy mildew resistance. Interestingly, a 0.78-Mb interval between C8M257 and C8M268 on chromosome 8 was highlighted because of its presence in three major QTL, qDM8_1, qDM8_2, and qDM8_4, which contains 10 NBS-LRR genes. Haplotype analysis in RILs and natural population suggest that 9 SNP loci on Seita8G.199800, Seita8G.195900, Seita8G.198300, and Seita.8G199300 genes were significantly correlated with disease resistance. Furthermore, we found that those genes were taxon-specific by collinearity analysis of pearl millet and foxtail millet genomes. The identification of these new resistance QTL and the prediction of resistance genes against downy mildew will be useful in breeding for resistant varieties and the study of genetic mechanisms of downy mildew disease resistance in foxtail millet.


Assuntos
Mapeamento Cromossômico , Resistência à Doença , Ligação Genética , Fenótipo , Doenças das Plantas , Locos de Características Quantitativas , Setaria (Planta) , Resistência à Doença/genética , Mapeamento Cromossômico/métodos , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Setaria (Planta)/genética , Setaria (Planta)/microbiologia , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Cromossomos de Plantas/genética
8.
J Immunol ; 209(5): 886-895, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914836

RESUMO

Memory CD8+ T cells play an essential role in providing effective and lifelong protection against pathogens. Comprehensive transcriptional and epigenetic networks are involved in modulating memory T cell development, but the molecular regulations of CD8+ memory T cell formation and long-term persistence remain largely unknown. In this study, we show that zinc finger protein 335 (Zfp335) is indispensable for CD8+ T cell memory establishment and maintenance during acute infections. Mice with Zfp335 deletion in CD8+ T cells exhibit a significant reduction of memory T cells and memory precursor cells in the contraction phase. Zfp335 deficiency in CD8+ T cells resulted in decreased expression of memory featured genes Eomes and IL-2Rß, leading to a loss of memory identity and an increase of apoptosis in response to IL-7 and IL-15. Mechanistically, Zfp335 directly binds to and regulates TCF-1, known to be critical for memory T cell development. Importantly, overexpression TCF-1 could rescue the defects in the survival of both CD8+ memory precursors and memory T cells caused by Zfp335 deficiency. Collectively, our findings reveal that Zfp335 serves as a novel transcriptional factor upstream of TCF-1 in regulating CD8+ T cell memory.


Assuntos
Linfócitos T CD8-Positivos , Interleucina-15 , Animais , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica , Memória Imunológica/genética , Interleucina-15/metabolismo , Interleucina-7/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição
9.
J Immunol ; 209(5): 855-863, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36130132

RESUMO

Effector CD8+ T cells are crucial players in adaptive immunity for effective protection against invading pathogens. The regulatory mechanisms underlying CD8+ T cell effector differentiation are incompletely understood. In this study, we defined a critical role of mediator complex subunit 1 (Med1) in controlling effector CD8+ T cell differentiation and survival during acute bacterial infection. Mice with Med1-deficient CD8+ T cells exhibited significantly impaired expansion with evidently reduced killer cell lectin-like receptor G1+ terminally differentiated and Ly6c+ effector cell populations. Moreover, Med1 deficiency led to enhanced cell apoptosis and expression of multiple inhibitory receptors (programmed cell death 1, T cell Ig and mucin domain-containing-3, and T cell immunoreceptor with Ig and ITIM domains). RNA-sequencing analysis revealed that T-bet- and Zeb2-mediated transcriptional programs were impaired in Med1-deficient CD8+ T cells. Overexpression of T-bet could rescue the differentiation and survival of Med1-deficient CD8+ effector T cells. Mechanistically, the transcription factor C/EBPß promoted T-bet expression through interacting with Med1 in effector T cells. Collectively, our findings revealed a novel role of Med1 in regulating effector CD8+ T cell differentiation and survival in response to bacterial infection.


Assuntos
Linfócitos T CD8-Positivos , Subunidade 1 do Complexo Mediador , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular , Subunidade 1 do Complexo Mediador/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mucinas/metabolismo , RNA/metabolismo , Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteínas com Domínio T/metabolismo
10.
Cardiology ; 149(3): 286-296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38228115

RESUMO

INTRODUCTION: This study aimed to explore the function of miR-135a in the progress of atrial fibrosis and the mechanism of miR-135a/SIRT1 (sirtuin 1) in human cardiac fibroblasts and mouse cardiac fibroblasts (MCFs) mediating the regulation of atrial fibrosis by mitochondrial oxidative respiration function. METHODS: Using Ang II (angiotensin II) to induce fibrosis in HCFs (human corneal fibroblasts) and MCF (Michigan Cancer Foundation, MCF) cells in vitro, the miRNA-seq results of previous studies were validated. Proliferative and invasive ability of HCFs and MCFs was detected by Cell Counting Kit-8 assay (CCK-8) and scratch experiment after overexpressing miR-135a in HCFs and MCF cells. Protein and mRNA expression was tested using Western blot and qPCR. The target of miR-135a was verified as SIRT1 by a luciferase reporter assay and the activities of the mitochondrial respiratory enzyme complexes I, II, III, and IV were determined colorimetrically. The activities of malondialdehyde, reactive oxygen species, and superoxide dismutase in cells were detected with enzyme-linked immunosorbent assay (ELISA). RESULTS: miR-135a expression was elevated in HCFs and MCFs cells in the Ang II group than control group. Overexpression of miR-135a could promote the proliferation, migration, oxidative stress, as well as fibrosis of cardiac fibroblasts and suppresses mitochondrial activity. In addition, we found SIRT1 was a target gene of miR-135a. What is more, the findings showed miR-135a promoted fibrosis in HCFs and MCFs cells acting through regulation of SIRT1. CONCLUSIONS: miR-135a mediates mitochondrial oxidative respiratory function through SIRT1 to regulate atrial fibrosis.


Assuntos
Fibroblastos , Fibrose , Átrios do Coração , MicroRNAs , Sirtuína 1 , MicroRNAs/metabolismo , MicroRNAs/genética , Sirtuína 1/metabolismo , Sirtuína 1/genética , Humanos , Camundongos , Animais , Fibroblastos/metabolismo , Átrios do Coração/patologia , Átrios do Coração/metabolismo , Proliferação de Células/genética , Angiotensina II , Estresse Oxidativo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas
11.
Phytopathology ; 114(1): 73-83, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37535821

RESUMO

Downy mildew caused by Sclerospora graminicola is a systemic infectious disease affecting foxtail millet production in Africa and Asia. S. graminicola-infected leaves could be decomposed to a state where only the veins remain, resulting in a filamentous leaf tissue symptom. The aim of the present study was to investigate how S. graminicola influences the formation of the filamentous leaf tissue symptoms in hosts at the morphological and molecular levels. We discovered that vegetative hyphae expanded rapidly, with high biomass accumulated at the early stages of S. graminicola infection. In addition, S. graminicola could affect spikelet morphological development at the panicle branch differentiation stage to the pistil and stamen differentiation stage by interfering with hormones and nutrient metabolism in the host, resulting in hedgehog-like panicle symptoms. S. graminicola could acquire high amounts of nutrients from host tissues through secretion of ß-glucosidase, endoglucanase, and pectic enzyme, and destroyed host mesophyll cells by mechanical pressure caused by rapid expansion of hyphae. At the later stages, S. graminicola could rapidly complete sexual reproduction through tryptophan, fatty acid, starch, and sucrose metabolism and subsequently produce numerous oospores. Oospore proliferation and development further damage host leaves via mechanical pressure, resulting in a large number of degraded and extinct mesophyll cells and, subsequently, malformed leaves with only veins left, that is, "filamentous leaf tissue." Our study revealed the S. graminicola expansion characteristics from its asexual to sexual development stages, and the potential mechanisms via which the destructive effects of S. graminicola on hosts occur at different growth stages.


Assuntos
Oomicetos , Setaria (Planta) , Proteínas Hedgehog/metabolismo , Doenças das Plantas , Folhas de Planta
12.
BMC Immunol ; 24(1): 36, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794375

RESUMO

Digestive autoimmune conditions are a growing challenge to global health. Risk factors associated with autoimmune digestive diseases are complex, including genetic variation, immunological dysfunction, and various environmental factors. To improve our understanding of the mechanisms behind digestive autoimmune conditions, including factors causing gastrointestinal manifestations and pathogenesis, BMC Immunology has launched a new Collection "The digestive system and autoimmunity".


Assuntos
Doenças Autoimunes , Autoimunidade , Humanos , Autoimunidade/genética , Sistema Digestório
13.
Eur J Immunol ; 52(11): 1789-1804, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35908180

RESUMO

Thymic epithelial cells (TECs) are important for T cell development and immune tolerance establishment. Although comprehensive molecular regulation of TEC development has been studied, the role of transport protein particle complexes (Trappcs) in TECs is not clear. Using TEC-specific homozygous or heterozygous Trappc1 deleted mice model, we find that Trappc1 deficiency cause severe thymus atrophy with decreased cell number and blocked maturation of TECs. Mice with a TEC-specific Trappc1 deletion show poor thymic T cell output and have a greater percentage of activated/memory T cells, suffered from spontaneous autoimmune disorders. Our RNA-seq and molecular studies indicated that the decreased endoplasmic reticulum (ER) and Golgi apparatus, enhanced unfolded protein response (UPR) and subsequent Atf4-CHOP-mediated apoptosis, and reactive oxygen species (ROS)-mediated ferroptosis coordinately contributed to the reduction of Trappc1-deleted TECs. Additionally, reduced Aire+ mTECs accompanied by the decreased expression of Irf4, Irf8, and Tbx21 in Trappc1 deficiency mTECs, may further coordinately block the tissue-restricted antigen expression. In this study, we reveal that Trappc1 plays an indispensable role in TEC development and maturation and provide evidence for the importance of inter-organelle traffic and ER homeostasis in TEC development.


Assuntos
Células Epiteliais , Timo , Camundongos , Animais , Diferenciação Celular , Homeostase , Retículo Endoplasmático
14.
Nat Immunol ; 12(1): 86-95, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21131965

RESUMO

The molecular mechanisms that direct transcription of the gene encoding the transcription factor Foxp3 in CD4(+) T cells remain ill-defined. We show here that deletion of the DNA-binding inhibitor Id3 resulted in the defective generation of Foxp3(+) regulatory T cells (T(reg) cells). We identify two transforming growth factor-ß1 (TGF-ß1)-dependent mechanisms that were vital for activation of Foxp3 transcription and were defective in Id3(-/-) CD4(+) T cells. Enhanced binding of the transcription factor E2A to the Foxp3 promoter promoted Foxp3 transcription. Id3 was required for relief of inhibition by the transcription factor GATA-3 at the Foxp3 promoter. Furthermore, Id3(-/-) T cells showed greater differentiation into the T(H)17 subset of helper T cells in vitro and in a mouse asthma model. Therefore, a network of factors acts in a TGF-ß-dependent manner to control Foxp3 expression and inhibit the development of T(H)17 cells.


Assuntos
Asma/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Animais , Asma/induzido quimicamente , Asma/genética , Asma/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Deleção de Sequência/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Células Th17/imunologia , Células Th17/patologia , Ativação Transcricional/genética , Fator de Crescimento Transformador beta1/metabolismo
15.
Microb Pathog ; 181: 106201, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37321424

RESUMO

Foxtail millet (Setaria italica [L.] P. Beauv.) is an important cereal worldwide. From 2021 to 2022, stalk rot disease of foxtail millet was identified in Shanxi province, northern China, with an 8% and 2% field incidence rate in Xinzhou (2 different locations), respectively. It caused necrosis, decay, stem lodging, and sometimes death. This study aimed to identify the causal agent of the disease through morphophysiological and molecular identification of the isolates. Stalk rot specimens were collected in Xinzhou, from foxtail millet plants exhibiting typical symptoms, and the pathogen was isolated with dilution plating. It was cultured at 28 °C for 48 h on nutrient agar, revealing circular, convex, and pale-yellow colonies, with a smooth surface and an entire edge. Scanning electron microscopy showed that the pathogen is rod shaped, round ended and has an uneven surface ranging from 0.5 to 0.7 µm in diameter and 1.2-2.7 µm in length. It is a motile gram-negative facultative anaerobic bacterium that can reduce nitrate and synthesize catalase but cannot hydrolyze starch. It also shows a negative reaction in the methyl red test and optimum growth at 37 °C. The pathogenicity test was performed on foxtail millet variety 'Jingu 21' stem to confirm Koch's postulates. The biochemical tests were done in the Biolog Gen III MicroPlate, revealing 21 positive chemical sensitivity tests, except those for minocycline and sodium bromate. Furthermore, among 71 carbon sources, the pathogen utilized 50 as the sole carbon source, including sucrose, d-maltose, α-d-lactose, d-galactose, D-sorbitol, D-mannitol, glycerol, and inositol. Finally, molecular characterization of the pathogen using 16S rRNA and rpoB gene sequencing and subsequent phylogenetic analysis identified the strain as Kosakonia cowanii. This study is the first to report K. cowanii as a stalk rot-causing pathogen in foxtail millet.


Assuntos
Setaria (Planta) , Filogenia , Setaria (Planta)/genética , Composição de Bases , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
Arch Virol ; 168(8): 199, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37400663

RESUMO

In this study, a novel single-stranded RNA virus was isolated from the plant-pathogenic fungus Setosphaeria turcica strain TG2, and the virus was named "Setosphaeria turcica ambiguivirus 2" (StAV2). The complete nucleotide sequence of the StAV2 genome was determined using RT-PCR and RLM-RACE. The StAV2 genome comprises 3,000 nucleotides with a G+C content of 57.77%. StAV2 contains two in-frame open reading frames (ORFs) with the potential to produce an ORF1-ORF2 fusion protein via a stop codon readthrough mechanism. ORF1 encodes a hypothetical protein (HP) of unknown function. The ORF2-encoded protein shows a high degree of sequence similarity to the RNA-dependent RNA polymerases (RdRps) of ambiguiviruses. BLASTp searches showed that the StAV2 HP and RdRp share the highest amino acid sequence identity (46.38% and 69.23%, respectively) with the corresponding proteins of a virus identified as "Riboviria sp." isolated from a soil sample. Multiple sequence alignments and phylogenetic analysis based on the amino acid sequences of the RdRp revealed that StAV2 is a new member of the proposed family "Ambiguiviridae".


Assuntos
Ascomicetos , Micovírus , Vírus de RNA , RNA Viral/genética , RNA Viral/química , Filogenia , Ascomicetos/genética , RNA Polimerase Dependente de RNA/genética , Fases de Leitura Aberta , Genoma Viral , Micovírus/genética
17.
Mediators Inflamm ; 2023: 6831695, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37273454

RESUMO

Esophageal carcinoma (ESCA) refers to the most common type of malignant tumor, which reveals that it occurs often all over the world. ESCA is also correlated with an advanced stage and low survival rates. Thus, the development of new prognostic biomarkers is an absolute necessity. In this study, the aim was to investigate the potential of COX7B as a brand-new predictive biomarker for ESCA patients. COX7B expression in pancancer was examined using TIMER2. The statistical significance of the predictive value of COX7B expression was explored. The relationship between COX7B expression and tumor-infiltrating immune cells in ESCA was analyzed by using ssGSEA. In this study, the result indicated that several types of cancers had an abnormally high amount of COX7B. COX7B expression in samples from patients with ESCA was considerably higher than in nontumor tissues. A more advanced clinical stage may be anticipated from higher COX7B expression. According to the findings of Kaplan-Meier survival curves, patients with low COX7B levels had a more favorable prognosis than those with high COX7B levels. The result of multivariate analysis suggested that COX7B expression was a standalone prognostic factor for the overall survival of ESCA patients. A prognostic nomogram including gender, clinical stage, and COX7B expression was constructed, and TCGA-based calibration plots indicated its excellent predictive performance. An analysis of immune infiltration revealed that COX7B expression has a negative correlation with TFH, Tcm, NK cells, and mast cells. COX7B may serve as an immunotherapy target and as a biomarker for ESCA diagnosis and prognosis.


Assuntos
Carcinoma , Neoplasias Esofágicas , Humanos , Imunoterapia , Estimativa de Kaplan-Meier , Prognóstico , Biomarcadores Tumorais
18.
Proc Natl Acad Sci U S A ; 117(45): 28212-28220, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106431

RESUMO

Somatic mutations are major genetic contributors to cancers and many other age-related diseases. Many disease-causing somatic mutations can initiate clonal growth prior to the appearance of any disease symptoms, yet experimental models that can be used to examine clonal abnormalities are limited. We describe a mosaic analysis system with Cre or Tomato (MASCOT) for tracking mutant cells and demonstrate its utility for modeling clonal hematopoiesis. MASCOT can be induced to constitutively express either Cre-GFP or Tomato for lineage tracing of a mutant and a reference group of cells simultaneously. We conducted mosaic analysis to assess functions of the Id3 and/or Tet2 gene in hematopoietic cell development and clonal hematopoiesis. Using Tomato-positive cells as a reference population, we demonstrated the high sensitivity of this system for detecting cell-intrinsic phenotypes during short-term or long-term tracking of hematopoietic cells. Long-term tracking of Tet2 mutant or Tet2/Id3 double-mutant cells in our MASCOT model revealed a dynamic shift from myeloid expansion to lymphoid expansion and subsequent development of lymphoma. This work demonstrates the utility of the MASCOT method in mosaic analysis of single or combined mutations, making the system suitable for modeling somatic mutations identified in humans.


Assuntos
Integrases/genética , Modelos Genéticos , Mutação/genética , Solanum lycopersicum/genética , Animais , Hematopoiese Clonal/genética , Técnicas Genéticas , Linfoma/genética , Camundongos , Camundongos Transgênicos , Mosaicismo , Análise de Sequência de DNA
19.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(9): 1296-1303, 2023.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38044640

RESUMO

OBJECTIVES: The differentiation of CD4+ T cells is regulated by a complex and fine signaling pathway composed of many molecules during immune response, and the molecular mechanism for regulating T-bet expression is unclear. Mediator complex subunit 1 (Med1) can combine with a variety of co-factors to regulate gene transcription, promote cell proliferation and survival, and affect invariant natural killer T cell (iNKT) development. This study aims to investigate the effect of Med1 on T cell development and CD4+ T cell differentiation in immune response. METHODS: Mice with T cell-specific knockout of Med1 gene (Med1F/FCD4cre+, KO) were constructed and verified. The percentage and number of CD4+ and CD8+ T cells in thymus, spleen, and lymph nodes of KO mice and control (Con) mice (Med1F/FCD4cre-) were detected by flow cytometry. After 8 days of infection with lymphocytic choriomeningitis virus (LCMV), the percentage and number of CD4+ T cells or antigen-specific (GP66+) CD4+ T cells, the percentage and number of Th1 cells (Ly6c+PSGL1+) in CD4+ T cells or antigen-specific CD4+ T cells were examined in the spleen of mice. Moreover, the fluorescence intensity of T-bet in CD4+ T cells or antigen-specific CD4+ T cells was analyzed. RESULTS: Compared with the Con group, the percentage and number of CD4+ T cells and CD8+ T cells in the thymus, CD4+ T cells in the spleen and lymph nodes of the KO group showed no significant differences (all P>0.05), but the percentage and number of CD8+ T cells in the spleen and lymph nodes of the KO group were diminished significantly (all P<0.05). After 8 days of infection with LCMV, there was no significant difference in the percentage and number of CD4+ T cells or antigen-specific CD4+ T cells in the spleen between the KO group and the Con group (all P>0.05), while in comparison with the Con group, the percentage and number of Th1 cells in CD4+ T cells or antigen-specific CD4+ T cells, and the expression of T-bet in CD4+ T cells or antigen-specific CD4+ T cells were significantly reduced in the spleen of the KO group (all P<0.05). CONCLUSIONS: Specific knockout of Med1 in T cells does not affect the development of CD4+ and CD8+ T cells in the thymus, but does affect the maintenance of peripheral CD8+ T cells. In the immune response, Med1 gene deletion affects the expression of transcription factor T-bet, which in turn to reduce Th1 cell differentiation.


Assuntos
Linfócitos T CD8-Positivos , Subunidade 1 do Complexo Mediador , Camundongos , Animais , Linfócitos T CD8-Positivos/metabolismo , Subunidade 1 do Complexo Mediador/metabolismo , Imunidade , Diferenciação Celular , Vírus da Coriomeningite Linfocítica/metabolismo , Células Th1/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Camundongos Endogâmicos C57BL
20.
J Cell Mol Med ; 26(15): 4268-4276, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35770325

RESUMO

Under static condition, the pool size of peripheral invariant natural killer T (iNKT) cells is determined by their homeostatic proliferation, survival and thymic input. However, the underlying mechanism is not fully understood. In the present study, we found that the percentage and number of iNKT cells were significantly reduced in the spleen, but not in the thymus of mice with deletion of polybromo-1 (Pbrm1) compared to wild type (WT) mice. Pbrm1 deletion did not affect iNKT cell proliferation and survival, instead significantly impaired their development from stage 1 to stage 2. Importantly, loss of Pbrm1 led to a dysfunction of RORγt expression and iNKT17 cell differentiation, but not iNKT1 and iNKT2 proportion. Collectively, our study reveals a novel mechanism of Pbrm1 controlling the peripheral size of iNKT cells through regulating their development and differentiation.


Assuntos
Células T Matadoras Naturais , Animais , Diferenciação Celular/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço , Timo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa