Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Endocrinol (Oxf) ; 96(3): 319-327, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34761429

RESUMO

OBJECTIVE: To explore the association between obesity and precocious puberty from the perspective of genetic polymorphism. DESIGN: Two hundred and ninety-eight pairs of girls in early puberty and age-matched controls (±3 months) were recruited. The genotypes of four obesity-related single-nucleotide polymorphism (SNP) loci (rs10968576, rs12935153, rs4674340 and rs7635103) were determined and the effect of variation on early puberty in Chinese Han girls was evaluated. The unstimulated luteinizing hormone (LH), follicle-stimulating hormone and estradiol levels were also measured to determine the relationship with SNP polymorphisms. RESULTS: The effect allele A of rs12935153 was associated with early puberty (odds ratio [OR] = 1.256, 95% confidence interval [CI]: 1.010-1.585), but the significance disappeared after multiple comparisons. After adjusting for body mass index, rs12935153 variation increased the risk of early puberty in additive (OR = 1.589, 95% CI: 1.222-2.066), dominant (OR = 1.788, 95% CI: 1.210-2.642) and recessive (OR = 1.915, 95% CI: 1.207-3.038) models of inheritance. Individuals harbouring AA genotype in rs12935153 had a risk of higher LH levels than that of wild type (OR = 1.668, 95% CI: 1.093-2.546). CONCLUSIONS: The association between obesity and precocity can be explained from a genetic perspective. Our study suggests that variations in rs12935153 increase the risk of early puberty in Chinese girls. Further studies are needed to verify our findings.


Assuntos
Puberdade Precoce , China , Feminino , Hormônio Foliculoestimulante , Hormônio Liberador de Gonadotropina , Humanos , Lactente , Obesidade/genética , Polimorfismo de Nucleotídeo Único/genética , Puberdade/genética , Puberdade Precoce/genética
2.
Materials (Basel) ; 15(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35888316

RESUMO

In this paper, spark plasma diffusion bonding technology was employed to join TiAl and Ti2AlNb with high temperature titanium alloy interlayer at 950 °C/10kN/60 min, then following furnace cooling at cooling rate up to 100 °C/min. After welding, the joint was aging heat-treated at 800 °C for 24 h. The microstructure and the elements diffusion of the TiAl/Ti2AlNb joint was analyzed by field emission scanning electron microscopy (FESEM) with EDS. Moreover, the tensile properties of the joint were tested at room temperature, 650 °C, and 750 °C. The results show that the spark plasma diffusion bonding formed a high quality TiAl/Ti2AlNb joint without microcracks or microvoids, while also effectively protecting the base metal. Significant differences in the microstructure of the joint appeared from TiAl side to Ti2AlNb side: TiAl BM (Base Metal) → DP(Duplex) and NG (Near-Gamma) → α2-phase matrix with needle-like α-phase → bulk α2-phase → needle-like α-phase → metastable ß-phase → Ti2AlNb BM. After heat treatment at 800 °C for 24 h, the microstructure of the TiAl side and the interlayer region did not change, but the density and size of the needle-like α-phase in region 3 increased slightly. The microstructure of Ti2AlNb near the weld changed obviously, and a large number of fine O phases are precipitated from the metastable ß phase matrix after heat treatment. Except for the Ti2AlN near-interface region, the effect of heat treatment on the microstructure of the joint is not significant. The microhardness of the joint is in the shape of a mountain peak. The maximum microhardness at the interface is above 500 HV, and it is significantly reduced to 400 HV after heat treatment. The fracture of the joint occurred at the interface at room temperature, 650 °C, and 750 °C. with the tensile strength 450 MPa, 540 MPa, and 471 Mpa, respectively, and mainly showing brittle fracture.

3.
Materials (Basel) ; 13(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722173

RESUMO

To solve the problem of poor weldability between TiAl-based and Ti2AlNb-based alloys, spark plasma diffusion bonding was employed to join a TiAl alloy and a Ti2AlNb alloy with a pure Ti foil as interlayer at 950 °C/10 KN/60 min. After welding, slow cooling was carried out at a rate of 5 °C/min, followed by homogenization at 800 °C for 24 h. The microstructural evolution and elemental migration of the joint were analyzed via a scanning electron microscope equipped with an energy dispersive spectrometer, while the mechanical properties of the joint were assessed via microhardness and tensile tests. The results show that the spark plasma diffusion bonding formed a joint of TiAl/Ti/Ti2AlNb without microcracks or microvoids, while also effectively protecting the base metal. Before heat treatment, the maximum hardness value (401 HV) appeared at the Ti2AlNb/Ti interface, while the minimum hardness value (281 HV) occurred in the TiAl base metal. The tensile strength of the heat-treated joint at room temperature was measured to be up to 454 MPa, with a brittle fracture occurring in the interlayer. The tensile strength of the joint at 650 °C was measured to be up to 538 MPa, with intergranular cracks occurring in the TiAl base metal.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa