Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(4): 797-810.e13, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29395326

RESUMO

Aberrant activation of innate immune receptors can cause a spectrum of immune disorders, such as Aicardi-Goutières syndrome (AGS). One such receptor is MDA5, a viral dsRNA sensor that induces antiviral immune response. Using a newly developed RNase-protection/RNA-seq approach, we demonstrate here that constitutive activation of MDA5 in AGS results from the loss of tolerance to cellular dsRNAs formed by Alu retroelements. While wild-type MDA5 cannot efficiently recognize Alu-dsRNAs because of its limited filament formation on imperfect duplexes, AGS variants of MDA5 display reduced sensitivity to duplex structural irregularities, assembling signaling-competent filaments on Alu-dsRNAs. Moreover, we identified an unexpected role of an RNA-rich cellular environment in suppressing aberrant MDA5 oligomerization, highlighting context dependence of self versus non-self discrimination. Overall, our work demonstrates that the increased efficiency of MDA5 in recognizing dsRNA comes at a cost of self-recognition and implicates a unique role of Alu-dsRNAs as virus-like elements that shape the primate immune system.


Assuntos
Elementos Alu/imunologia , Doenças Autoimunes do Sistema Nervoso/imunologia , Helicase IFIH1 Induzida por Interferon/imunologia , Malformações do Sistema Nervoso/imunologia , Multimerização Proteica/imunologia , RNA de Cadeia Dupla/imunologia , Tolerância a Antígenos Próprios , Células A549 , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/patologia , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Helicase IFIH1 Induzida por Interferon/genética , Muramidase , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Fragmentos de Peptídeos , Multimerização Proteica/genética , RNA de Cadeia Dupla/genética , Células THP-1
2.
Cell ; 174(2): 433-447.e19, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29909985

RESUMO

Nearly all prostate cancer deaths are from metastatic castration-resistant prostate cancer (mCRPC), but there have been few whole-genome sequencing (WGS) studies of this disease state. We performed linked-read WGS on 23 mCRPC biopsy specimens and analyzed cell-free DNA sequencing data from 86 patients with mCRPC. In addition to frequent rearrangements affecting known prostate cancer genes, we observed complex rearrangements of the AR locus in most cases. Unexpectedly, these rearrangements include highly recurrent tandem duplications involving an upstream enhancer of AR in 70%-87% of cases compared with <2% of primary prostate cancers. A subset of cases displayed AR or MYC enhancer duplication in the context of a genome-wide tandem duplicator phenotype associated with CDK12 inactivation. Our findings highlight the complex genomic structure of mCRPC, nominate alterations that may inform prostate cancer treatment, and suggest that additional recurrent events in the non-coding mCRPC genome remain to be discovered.


Assuntos
Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Sequenciamento Completo do Genoma , Idoso , Anilidas/uso terapêutico , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Elementos Facilitadores Genéticos/genética , Duplicação Gênica , Rearranjo Gênico , Genes myc , Loci Gênicos , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , PTEN Fosfo-Hidrolase/genética , Fenótipo , Antígeno Prostático Específico/sangue , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico
3.
Nature ; 619(7968): 184-192, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37286600

RESUMO

Transcriptional heterogeneity due to plasticity of the epigenetic state of chromatin contributes to tumour evolution, metastasis and drug resistance1-3. However, the mechanisms that cause this epigenetic variation are incompletely understood. Here we identify micronuclei and chromosome bridges, aberrations in the nucleus common in cancer4,5, as sources of heritable transcriptional suppression. Using a combination of approaches, including long-term live-cell imaging and same-cell single-cell RNA sequencing (Look-Seq2), we identified reductions in gene expression in chromosomes from micronuclei. With heterogeneous penetrance, these changes in gene expression can be heritable even after the chromosome from the micronucleus has been re-incorporated into a normal daughter cell nucleus. Concomitantly, micronuclear chromosomes acquire aberrant epigenetic chromatin marks. These defects may persist as variably reduced chromatin accessibility and reduced gene expression after clonal expansion from single cells. Persistent transcriptional repression is strongly associated with, and may be explained by, markedly long-lived DNA damage. Epigenetic alterations in transcription may therefore be inherently coupled to chromosomal instability and aberrations in nuclear architecture.


Assuntos
Instabilidade Cromossômica , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Micronúcleos com Defeito Cromossômico , Neoplasias , Transcrição Gênica , Humanos , Cromatina/genética , Cromatina/metabolismo , Cromossomos/genética , Células Clonais/metabolismo , Dano ao DNA/genética , Neoplasias/genética , Neoplasias/patologia , Análise da Expressão Gênica de Célula Única
4.
Mol Cell ; 81(5): 901-904, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33667381

RESUMO

Combining live-cell imaging, cytogenetics, genome sequencing, and in vitro evolution, Shoshani et al. (2020) revealed deep connections between chromothripsis, the catastrophic shattering of a chromosome in abnormal nuclear structures, and gene amplification, a frequent culprit of oncogenic activation.


Assuntos
Cromotripsia , Neoplasias , Cromossomos/genética , Análise Citogenética , Amplificação de Genes , Humanos , Neoplasias/genética
5.
Annu Rev Genet ; 49: 183-211, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442848

RESUMO

Chromosomal rearrangements are generally thought to accumulate gradually over many generations. However, DNA sequencing of cancer and congenital disorders uncovered a new pattern in which multiple rearrangements arise all at once. The most striking example, chromothripsis, is characterized by tens or hundreds of rearrangements confined to a single chromosome or to local regions over a few chromosomes. Genomic analysis of chromothripsis and the search for its biological mechanism have led to new insights on how chromosome segregation errors can generate mutagenesis and changes to the karyotype. Here, we review the genomic features of chromothripsis and summarize recent progress on understanding its mechanism. This includes reviewing new work indicating that one mechanism to generate chromothripsis is through the physical isolation of chromosomes in abnormal nuclear structures (micronuclei). We also discuss connections revealed by recent genomic analysis of cancers between chromothripsis, chromosome bridges, and ring chromosomes.


Assuntos
Evolução Biológica , Cromossomos/genética , Cariótipo , Mutagênese/fisiologia , Cromossomos Humanos/genética , Rearranjo Gênico , Humanos , Micronúcleos com Defeito Cromossômico , Membrana Nuclear/genética , Cromossomos em Anel
6.
Genome Res ; 28(4): 581-591, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29535149

RESUMO

Structural variants (SVs), including small insertion and deletion variants (indels), are challenging to detect through standard alignment-based variant calling methods. Sequence assembly offers a powerful approach to identifying SVs, but is difficult to apply at scale genome-wide for SV detection due to its computational complexity and the difficulty of extracting SVs from assembly contigs. We describe SvABA, an efficient and accurate method for detecting SVs from short-read sequencing data using genome-wide local assembly with low memory and computing requirements. We evaluated SvABA's performance on the NA12878 human genome and in simulated and real cancer genomes. SvABA demonstrates superior sensitivity and specificity across a large spectrum of SVs and substantially improves detection performance for variants in the 20-300 bp range, compared with existing methods. SvABA also identifies complex somatic rearrangements with chains of short (<1000 bp) templated-sequence insertions copied from distant genomic regions. We applied SvABA to 344 cancer genomes from 11 cancer types and found that short templated-sequence insertions occur in ∼4% of all somatic rearrangements. Finally, we demonstrate that SvABA can identify sites of viral integration and cancer driver alterations containing medium-sized (50-300 bp) SVs.


Assuntos
Genoma Humano/genética , Variação Estrutural do Genoma/genética , Genômica , Mutação INDEL/genética , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA , Deleção de Sequência/genética , Software , Integração Viral/genética
7.
Nature ; 522(7555): 179-84, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26017310

RESUMO

Genome sequencing has uncovered a new mutational phenomenon in cancer and congenital disorders called chromothripsis. Chromothripsis is characterized by extensive genomic rearrangements and an oscillating pattern of DNA copy number levels, all curiously restricted to one or a few chromosomes. The mechanism for chromothripsis is unknown, but we previously proposed that it could occur through the physical isolation of chromosomes in aberrant nuclear structures called micronuclei. Here, using a combination of live cell imaging and single-cell genome sequencing, we demonstrate that micronucleus formation can indeed generate a spectrum of genomic rearrangements, some of which recapitulate all known features of chromothripsis. These events are restricted to the mis-segregated chromosome and occur within one cell division. We demonstrate that the mechanism for chromothripsis can involve the fragmentation and subsequent reassembly of a single chromatid from a micronucleus. Collectively, these experiments establish a new mutational process of which chromothripsis is one extreme outcome.


Assuntos
Quebra Cromossômica , Dano ao DNA , Micronúcleos com Defeito Cromossômico , Linhagem Celular , Sobrevivência Celular , Segregação de Cromossomos/genética , Variações do Número de Cópias de DNA/genética , Rearranjo Gênico/genética , Instabilidade Genômica/genética , Humanos , Mutação/genética , Neoplasias/genética , Fase S/genética , Análise de Célula Única
8.
Genes Dev ; 27(23): 2513-30, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24298051

RESUMO

Recent genome sequencing studies have identified several classes of complex genomic rearrangements that appear to be derived from a single catastrophic event. These discoveries identify ways that genomes can be altered in single large jumps rather than by many incremental steps. Here we compare and contrast these phenomena and examine the evidence that they arise "all at once." We consider the impact of massive chromosomal change for the development of diseases such as cancer and for evolution more generally. Finally, we summarize current models for underlying mechanisms and discuss strategies for testing these models.


Assuntos
Evolução Molecular , Rearranjo Gênico/genética , Genoma Humano/genética , Aberrações Cromossômicas , Instabilidade Genômica , Humanos
9.
Genome Res ; 27(8): 1300-1311, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28679620

RESUMO

Intra-tumoral genetic heterogeneity has been characterized across cancers by genome sequencing of bulk tumors, including chronic lymphocytic leukemia (CLL). In order to more accurately identify subclones, define phylogenetic relationships, and probe genotype-phenotype relationships, we developed methods for targeted mutation detection in DNA and RNA isolated from thousands of single cells from five CLL samples. By clearly resolving phylogenic relationships, we uncovered mutated LCP1 and WNK1 as novel CLL drivers, supported by functional evidence demonstrating their impact on CLL pathways. Integrative analysis of somatic mutations with transcriptional states prompts the idea that convergent evolution generates phenotypically similar cells in distinct genetic branches, thus creating a cohesive expression profile in each CLL sample despite the presence of genetic heterogeneity. Our study highlights the potential for single-cell RNA-based targeted analysis to sensitively determine transcriptional and mutational profiles of individual cancer cells, leading to increased understanding of driving events in malignancy.


Assuntos
Biomarcadores Tumorais/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Mutação , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Adulto , Estudos de Casos e Controles , Evolução Molecular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transcrição Gênica
10.
Acta Pharmacol Sin ; 40(12): 1513-1522, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31253938

RESUMO

Ischemic heart diseases (IHDs) cause great morbidity and mortality worldwide, necessitating effective treatment. Salvianic acid A sodium (SAAS) is an active compound derived from the well-known herbal medicine Danshen, which has been widely used for clinical treatment of cardiovascular diseases in China. This study aimed to confirm the cardioprotective effects of SAAS in rats with myocardial infarction and to investigate the underlying molecular mechanisms based on proteome and transcriptome profiling of myocardial tissue. The results showed that SAAS effectively protected against myocardial injury and improved cardiac function. The differentially expressed proteins and genes included important structural molecules, receptors, transcription factors, and cofactors. Functional enrichment analysis indicated that SAAS participated in the regulation of actin cytoskeleton, phagosome, focal adhesion, tight junction, apoptosis, MAPK signaling, and Wnt signaling pathways, which are closely related to cardiovascular diseases. SAAS may exert its cardioprotective effect by targeting multiple pathways at both the proteome and transcriptome levels. This study has provided not only new insights into the pathogenesis of myocardial infarction but also a road map of the cardioprotective molecular mechanisms of SAAS, which may provide pharmacological evidence to aid in its clinical application.


Assuntos
Cardiotônicos/uso terapêutico , Lactatos/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Proteoma/metabolismo , Transcriptoma/efeitos dos fármacos , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Coração/efeitos dos fármacos , Masculino , Miocárdio/patologia , Mapeamento de Interação de Proteínas , Proteômica , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
11.
Genome Res ; 25(11): 1634-45, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26377837

RESUMO

Lymphoma is the most common hematological malignancy in developed countries. Outcome is strongly determined by molecular subtype, reflecting a need for new and improved treatment options. Dogs spontaneously develop lymphoma, and the predisposition of certain breeds indicates genetic risk factors. Using the dog breed structure, we selected three lymphoma predisposed breeds developing primarily T-cell (boxer), primarily B-cell (cocker spaniel), and with equal distribution of B- and T-cell lymphoma (golden retriever), respectively. We investigated the somatic mutations in B- and T-cell lymphomas from these breeds by exome sequencing of tumor and normal pairs. Strong similarities were evident between B-cell lymphomas from golden retrievers and cocker spaniels, with recurrent mutations in TRAF3-MAP3K14 (28% of all cases), FBXW7 (25%), and POT1 (17%). The FBXW7 mutations recurrently occur in a specific codon; the corresponding codon is recurrently mutated in human cancer. In contrast, T-cell lymphomas from the predisposed breeds, boxers and golden retrievers, show little overlap in their mutation pattern, sharing only one of their 15 most recurrently mutated genes. Boxers, which develop aggressive T-cell lymphomas, are typically mutated in the PTEN-mTOR pathway. T-cell lymphomas in golden retrievers are often less aggressive, and their tumors typically showed mutations in genes involved in cellular metabolism. We identify genes with known involvement in human lymphoma and leukemia, genes implicated in other human cancers, as well as novel genes that could allow new therapeutic options.


Assuntos
Cães/genética , Exoma , Patrimônio Genético , Linfoma de Células B/genética , Animais , Linfócitos B/metabolismo , Proteínas de Ciclo Celular/genética , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Proteínas F-Box/genética , Proteína 7 com Repetições F-Box-WD , Humanos , Linfoma de Células B/diagnóstico , Mutação , Proteínas Serina-Treonina Quinases/genética , Alinhamento de Sequência , Complexo Shelterina , Linfócitos T/metabolismo , Fator 3 Associado a Receptor de TNF/genética , Proteínas de Ligação a Telômeros/genética , Ubiquitina-Proteína Ligases/genética , Quinase Induzida por NF-kappaB
12.
Bioinformatics ; 32(13): 2029-31, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27153727

RESUMO

UNLABELLED: We developed VariantBam, a C ++ read filtering and profiling tool for use with BAM, CRAM and SAM sequencing files. VariantBam provides a flexible framework for extracting sequencing reads or read-pairs that satisfy combinations of rules, defined by any number of genomic intervals or variant sites. We have implemented filters based on alignment data, sequence motifs, regional coverage and base quality. For example, VariantBam achieved a median size reduction ratio of 3.1:1 when applied to 10 lung cancer whole genome BAMs by removing large tags and selecting for only high-quality variant-supporting reads and reads matching a large dictionary of sequence motifs. Thus VariantBam enables efficient storage of sequencing data while preserving the most relevant information for downstream analysis. AVAILABILITY AND IMPLEMENTATION: VariantBam and full documentation are available at github.com/jwalabroad/VariantBam CONTACT: rameen@broadinstitute.org SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Software , Humanos
13.
Nature ; 466(7309): 992-5, 2010 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-20725043

RESUMO

Haemostasis in the arteriolar circulation mediated by von Willebrand factor (VWF) binding to platelets is an example of an adhesive interaction that must withstand strong hydrodynamic forces acting on cells. VWF is a concatenated, multifunctional protein that has binding sites for platelets as well as subendothelial collagen. Binding of the A1 domain in VWF to the glycoprotein Ib alpha subunit (GPIbalpha) on the surface of platelets mediates crosslinking of platelets to one another and the formation of a platelet plug for arterioles. The importance of VWF is illustrated by its mutation in von Willebrand disease, a bleeding diathesis. Here, we describe a novel mechanochemical specialization of the A1-GPIbalpha bond for force-resistance. We have developed a method that enables, for the first time, repeated measurements of the binding and unbinding of a receptor and ligand in a single molecule (ReaLiSM). We demonstrate two states of the receptor-ligand bond, that is, a flex-bond. One state is seen at low force; a second state begins to engage at 10 pN with a approximately 20-fold longer lifetime and greater force resistance. The lifetimes of the two states, how force exponentiates lifetime, and the kinetics of switching between the two states are all measured. For the first time, single-molecule measurements on this system are in agreement with bulk phase measurements. The results have important implications not only for how platelets bound to VWF are able to resist force to plug arterioles, but also how increased flow activates platelet plug formation.


Assuntos
Arteríolas/fisiologia , Coagulação Sanguínea/fisiologia , Plaquetas/metabolismo , Glicoproteínas de Membrana/metabolismo , Fator de von Willebrand/metabolismo , Animais , Arteríolas/citologia , Plaquetas/química , Plaquetas/citologia , Linhagem Celular , Hemorreologia , Humanos , Cinética , Ligantes , Glicoproteínas de Membrana/química , Camundongos , Modelos Químicos , Modelos Moleculares , Complexo Glicoproteico GPIb-IX de Plaquetas , Ligação Proteica , Estrutura Terciária de Proteína , Resistência à Tração , Fator de von Willebrand/química
14.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496539

RESUMO

Chromosomal aberrations are prevalent in cancer genomes, yet it remains challenging to resolve the long-range structure of rearranged chromosomes. A key problem is to determine the chromosomal origin of rearranged genomic segments, which requires chromosome-length haplotype information. Here we describe refLinker, a new computational method for whole-chromosome haplotype inference using external reference panels and Hi-C. We show that refLinker ensures consistent long-range phasing accuracy in both diploid human genomes and aneuploid cancers, including regions with loss-of-heterozygosity and high-level focal amplification. We further demonstrate the feasibility of complex genome reconstruction using haplotype-specific Hi-C contacts, revealing new karyotype features in two widely studied cancer cell lines. Together, these findings provide a new framework for the complete resolution of long-range chromosome structure in complex genomes and highlight the unique advantages of Hi-C data for reconstructing cancer genomes with chromosome-scale continuity.

15.
Sensors (Basel) ; 13(11): 15290-306, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24217354

RESUMO

The vibration of a violin bridge is a dynamic contact vibration with two interfaces: strings-bridge, and bridge feet-top plate. In this paper, the mobility of an isolated bridge under in-plane excitation is explored using finite element modeling based on the contact vibration model. Numerical results show that the dynamic contact stiffness in the two contact interfaces has a great impact on the bridge mobility. A main resonance peak is observed in the frequency range of 2-3 kHz in the frequency response of the isolated bridge when the contact stiffness is smaller than a critical threshold. The main resonance peak frequency is affected by the contact stiffness as well. In order to verify the numerical findings, a novel experimental system is then designed on the basis of a piezoelectric dynamometer for bridge mobility analysis. Experimental results confirm the impact of the dynamic contact stiffness on the bridge mobility.

16.
Methods Mol Biol ; 2590: 149-159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36335498

RESUMO

Haplotype ("haploid genotype") phase is the combination of genotypes at sites of genetic variation along a chromosome [1]. We previously demonstrated that the complete chromosomal haplotype of diploid human genomes can be determined using molecular linkage from Hi-C sequencing and linked-reads sequencing [2]. In this chapter, we present a step-by-step guide to perform this analysis using mLinker, a software package for haplotype inference.


Assuntos
Algoritmos , Genoma Humano , Humanos , Haplótipos/genética , Genótipo , Cromossomos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
17.
Nat Commun ; 14(1): 6203, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794034

RESUMO

The progression of precancerous lesions to malignancy is often accompanied by increasing complexity of chromosomal alterations but how these alterations arise is poorly understood. Here we perform haplotype-specific analysis of chromosomal copy-number evolution in the progression of Barrett's esophagus (BE) to esophageal adenocarcinoma (EAC) on multiregional whole-genome sequencing data of BE with dysplasia and microscopic EAC foci. We identify distinct patterns of copy-number evolution indicating multigenerational chromosomal instability that is initiated by cell division errors but propagated only after p53 loss. While abnormal mitosis, including whole-genome duplication, underlies chromosomal copy-number changes, segmental alterations display signatures of successive breakage-fusion-bridge cycles and chromothripsis of unstable dicentric chromosomes. Our analysis elucidates how multigenerational chromosomal instability generates copy-number variation in BE cells, precipitates complex alterations including DNA amplifications, and promotes their independent clonal expansion and transformation. In particular, we suggest sloping copy-number variation as a signature of ongoing chromosomal instability that precedes copy-number complexity. These findings suggest copy-number heterogeneity in advanced cancers originates from chromosomal instability in precancerous cells and such instability may be identified from the presence of sloping copy-number variation in bulk sequencing data.


Assuntos
Adenocarcinoma , Esôfago de Barrett , Neoplasias Esofágicas , Lesões Pré-Cancerosas , Humanos , Esôfago de Barrett/genética , Esôfago de Barrett/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Instabilidade Cromossômica/genética , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Genômica , Progressão da Doença
18.
bioRxiv ; 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37577497

RESUMO

Xp11 translocation renal cell carcinoma (tRCC) is a female-predominant kidney cancer driven by translocations between the TFE3 gene on chromosome Xp11.2 and partner genes located on either chrX or on autosomes. The rearrangement processes that underlie TFE3 fusions, and whether they are linked to the female sex bias of this cancer, are largely unexplored. Moreover, whether oncogenic TFE3 fusions arise from both the active and inactive X chromosomes in females remains unknown. Here we address these questions by haplotype-specific analyses of whole-genome sequences of 29 tRCC samples from 15 patients and by re-analysis of 145 published tRCC whole-exome sequences. We show that TFE3 fusions universally arise as reciprocal translocations with minimal DNA loss or insertion at paired break ends. Strikingly, we observe a near exact 2:1 female:male ratio in TFE3 fusions arising via X:autosomal translocation (but not via X inversion), which accounts for the female predominance of tRCC. This 2:1 ratio is at least partially attributable to oncogenic fusions involving the inactive X chromosome and is accompanied by partial re-activation of silenced chrX genes on the rearranged chromosome. Our results highlight how somatic alterations involving the X chromosome place unique constraints on tumor initiation and exemplify how genetic rearrangements of the sex chromosomes can underlie cancer sex differences.

19.
Proc Natl Acad Sci U S A ; 106(23): 9226-31, 2009 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-19470641

RESUMO

The lengths of von Willebrand factor (VWF) concatamers correlate with hemostatic potency. After secretion in plasma, length is regulated by hydrodynamic shear force-dependent unfolding of the A2 domain, which is then cleaved by a specific protease. The 1.9-A crystal structure of the A2 domain demonstrates evolutionary adaptations to this shear sensor function. Unique among VWF A (VWA) domains, A2 contains a loop in place of the alpha4 helix, and a cis-proline. The central beta4-strand is poorly packed, with multiple side-chain rotamers. The Tyr-Met cleavage site is buried in the beta4-strand in the central hydrophobic core, and the Tyr structurally links to the C-terminal alpha6-helix. The alpha6-helix ends in 2 Cys residues that are linked by an unusual vicinal disulfide bond that is buried in a hydrophobic pocket. These features may narrow the force range over which unfolding occurs and may also slow refolding. Von Willebrand disease mutations, which presumably lower the force at which A2 unfolds, are illuminated by the structure.


Assuntos
Fator de von Willebrand/química , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Doenças de von Willebrand/genética , Fator de von Willebrand/genética
20.
Elife ; 112022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476649

RESUMO

In a departure from previous findings, new results suggest that free-floating pieces of DNA which carry additional copies of cancer-driving genes do not tend to cluster or have increased transcription.


Assuntos
DNA , DNA/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa