Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circ Res ; 132(1): 87-105, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36475898

RESUMO

BACKGROUND: The Hippo-YAP (yes-associated protein) signaling pathway is modulated in response to various environmental cues. Activation of YAP in vascular smooth muscle cells conveys the extracellular matrix stiffness-induced changes in vascular smooth muscle cells phenotype and behavior. Recent studies have established a mechanoreceptive role of receptor tyrosine kinase DDR1 (discoidin domain receptor 1) in vascular smooth muscle cells. METHODS: We conduced 5/6 nephrectomy in vascular smooth muscle cells-specific Ddr1-knockout mice, accompanied by pharmacological inhibition of the Hippo pathway kinase LATS1 (large tumor suppressor 1), to investigate DDR1 in YAP activation. We utilized polyacrylamide gels of varying stiffness or the DDR1 ligand, type I collagen, to stimulate the cells. We employed multiple molecular biological techniques to explore the role of DDR1 in controlling the Hippo pathway and to determine the mechanistic basis by which DDR1 exerts this effect. RESULTS: We identified the requirement for DDR1 in stiffness/collagen-induced YAP activation. We uncovered that DDR1 underwent stiffness/collagen binding-stimulated liquid-liquid phase separation and co-condensed with LATS1 to inactivate LATS1. Mutagenesis experiments revealed that the transmembrane domain is responsible for DDR1 droplet formation. Purified DDR1 N-terminal and transmembrane domain was sufficient to drive its reversible condensation. Depletion of the DDR1 C-terminus led to failure in co-condensation with LATS1. Interaction between the DDR1 C-terminus and LATS1 competitively inhibited binding of MOB1 (Mps one binder 1) to LATS1 and thus the subsequent phosphorylation of LATS1. Introduction of the single-point mutants, histidine-745-proline and histidine-902-proline, to DDR1 on the C-terminus abolished the co-condensation. In mouse models, YAP activity was positively correlated with collagen I expression and arterial stiffness. LATS1 inhibition reactivated the YAP signaling in Ddr1-deficient vessels and abrogated the arterial softening effect of Ddr1 deficiency. CONCLUSIONS: These findings identify DDR1 as a mediator of YAP activation by mechanical and chemical stimuli and demonstrate that DDR1 regulates LATS1 phosphorylation in an liquid-liquid phase separation-dependent manner.


Assuntos
Via de Sinalização Hippo , Histidina , Camundongos , Animais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Colágeno , Colágeno Tipo I
2.
Small ; 20(15): e2306809, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009781

RESUMO

The diagnosis and evaluation of traumatic brain injury (TBI) are crucial steps toward the treatment and prognosis of patients. A common question remains as to whether it is possible to introduce an ideal device for signal detection and evaluation that can directly connect digital signals with TBI, thereby enabling prompt response of the evaluation signal and sensitive and specific functioning of the detection process. Herein, a method is presented utilizing polymetric porous membranes with TRTK-12 peptide-modified nanochannels for the detection of S100B (a TBI biomarker) and assessment of TBI severity. The method leverages the specific bonding force between TRTK-12 peptide and S100B protein, along with the nanoconfinement effect of nanochannels, to achieve high sensitivity (LOD: 0.002 ng mL-1) and specificity (∆I/I0: 44.7%), utilizing ionic current change as an indicator. The proposed method, which is both sensitive and specific, offers a simple yet responsive approach for real-time evaluation of TBI severity. This innovative technique provides valuable scientific insights into the advancement of future diagnostic and therapeutic integration devices.


Assuntos
Biomimética , Lesões Encefálicas Traumáticas , Humanos , Peptídeos , Lesões Encefálicas Traumáticas/diagnóstico , Prognóstico , Biomarcadores , Subunidade beta da Proteína Ligante de Cálcio S100
3.
J Assist Reprod Genet ; 41(4): 875-883, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366240

RESUMO

PURPOSE: This study investigated the safety and effectiveness of oocyte vitrification by comparing the clinical pregnancy and perinatal outcomes between transfer cycles of vitrified oocytes and those of vitrified embryos. METHODS: A retrospective cohort study was conducted to analyze the clinical data of patients who underwent cleavage-stage embryo transfer at the Department of Reproductive Medicine between January 2011 and June 2021. Seventy-seven transfer cycles of fresh cleavage-stage embryos developed from vitrified-thawed oocytes (oocyte vitrification group) and 2170 transfer cycles of vitrified-thawed cleavage-stage embryos developed from fresh oocytes (embryo vitrification group) were included. Further, 293 cases were selected from the embryo vitrification group after applying propensity score matching at 1:4. The primary outcomes were miscarriage rate, live birth rate, and neonatal birth weight. RESULTS: No statistically significant differences were observed in the baseline data, pregnancy, perinatal outcomes, or neonatal outcomes for either singleton or twin births between the two groups after matching. Backwards stepwise regression was used to analyze the length of gestation. The age of female participants (ß = - 0.410, 95% CI = - 1.339 ~ - 0.620, P < 0.001) had a statistically significant effect. CONCLUSION: Oocyte vitrification results in similar clinical pregnancy and perinatal outcomes as does embryo vitrification; hence, it is a relatively safe assisted reproductive technique.


Assuntos
Criopreservação , Transferência Embrionária , Oócitos , Resultado da Gravidez , Taxa de Gravidez , Pontuação de Propensão , Vitrificação , Humanos , Feminino , Gravidez , Oócitos/crescimento & desenvolvimento , Criopreservação/métodos , Transferência Embrionária/métodos , Adulto , Estudos Retrospectivos , Fertilização in vitro/métodos , Nascido Vivo/epidemiologia , Aborto Espontâneo/epidemiologia , Coeficiente de Natalidade , Recém-Nascido
4.
Angew Chem Int Ed Engl ; 63(23): e202404763, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38588210

RESUMO

The electrochemical CO2 reduction reaction (eCO2RR) to multicarbon products has been widely recognized for Cu-based catalysts. However, the structural changes in Cu-based catalysts during the eCO2RR pose challenges to achieving an in-depth understanding of the structure-activity relationship, thereby limiting catalyst development. Herein, we employ constant-potential density functional theory calculations to investigate the sintering process of Cu single atoms of Cu-N-C single-atom catalysts into clusters under eCO2RR conditions. Systematic constant-potential ab initio molecular dynamics simulations revealed that the leaching of Cu-(CO)x moieties and subsequent agglomeration into clusters can be facilitated by synergistic adsorption of H and eCO2RR intermediates (e.g., CO). Increasing the Cu2+ concentration or the applied potential can efficiently suppress Cu sintering. Both microkinetic simulations and experimental results further confirm that sintered Cu clusters play a crucial role in generating C2 products. These findings provide significant insights into the dynamic evolution of Cu-based catalysts and the origin of their activity toward C2 products during the eCO2RR.

5.
Angew Chem Int Ed Engl ; : e202411535, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136168

RESUMO

The conventional covalent organic framework (COF)-based electrolytes with tailored ionic conducting behaviors are typically fabricated in the powder morphology, requiring further compaction procedures to operate as solid electrolyte tablets, which hinders the large-scale manufacturing of COF materials. In this study, we present a feasible electrospinning strategy to prepare scalable, self-supporting COF membranes (COMs) that feature a rigid COF skeleton bonded with flexible, lithiophilic polyethylene glycol (PEG) chains, forming an ion conduction network for Li⁺ transport. The resulting PEG-COM electrolytes exhibit enhanced dendrite inhibition and high ionic conductivity of 0.153 mS cm⁻¹ at 30 °C. The improved Li⁺ conduction in PEG-COM electrolytes stems from the loose ion pairing in the structure and the production of higher free Li⁺ content, as confirmed by solid-state 7Li NMR experiments. These changes in the local microenvironment of Li⁺ facilitate its directional movement within the COM pores. Consequently, solid-state symmetrical Li|Li, Li|LFP, and pouch cells demonstrate excellent electrochemical performance at 60 °C. This strategy offers a universal approach for constructing scalable COM-based electrolytes, thereby broadening the practical applications of COFs in solid-state lithium metal batteries.

6.
Chemistry ; 29(55): e202301619, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37403776

RESUMO

Urea synthesis from abundant CO2 and N-feedstocks via renewable electricity has attracted increasing interests, offering a promising alternative to the industrial-applied Haber-Meiser process. However, the studies toward electrochemical urea production remain scarce and appeal for more research. Herein, in this perspective, an up-to-date overview on the urea electrosynthesis is highlighted and summarized. Firstly, the reaction pathways of urea formation through various feedstocks are comprehensively discussed. Then, we focus on the strategies of materials design to improve C-N coupling efficiency by identifying the descriptor and understanding the reaction mechanism. Finally, the current challenges and disadvantages in this field are reviewed and some future development directions of electrocatalytic urea synthesis are also prospected. This Minireview aims to promote future investigations of the electrochemical urea synthesis.

7.
Chemphyschem ; 24(16): e202300152, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37309015

RESUMO

Electrochemical reactions mostly take place at a constant potential, but traditional DFT calculations operate at a neutral charge state. In order to really model experimental conditions, we developed a fixed-potential simulation framework via the iterated optimization and self-consistence of the required Fermi level. The B-doped graphene-based FeN4 sites for oxygen reduction reaction were chosen as the model to evaluate the accuracy of the fixed-potential simulation. The results demonstrate that *OH hydrogenation gets facile while O2 adsorption or hydrogenation becomes thermodynamically unfavorable due to the lower d-band center of Fe atoms in the constant potential state than the neutral charge state. The onset potential of ORR over B-doped FeN4 by performing potential-dependent simulations agree well with experimental findings. This work indicates that the fixed-potential simulation can provide a reasonable and accurate description on electrochemical reactions.

8.
Biochem Biophys Res Commun ; 607: 166-173, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35381387

RESUMO

Von Willebrand Factor (VWF) can promote platelet adhesion to the post-atherosclerotic regions to initiate thrombosis. The synthesis and secretion of VWF are important functions of endothelial cells (ECs). However, the mechanism through which blood flow regulates endothelial secretion of VWF remains unclear. We utilized a parallel-plate flow apparatus to apply fluid shear stress to human umbilical vein endothelial cells (HUVECs). Compared with pulsatile shear stress that mimics laminar flow in the straight parts of arteries or upstream of atherosclerotic stenosis sites, short-term exposure to oscillatory shear stress (OS) that mimics disturbed flow increased VWF secretion independent of affecting synaptosomal-associated protein 23 (SNAP23) expression and promoted the translocation of SNAP23 to the cell membrane. Vimentin associated with SNAP23, and this association was enhanced by OS or histamine. Acrylamide, a reagent that disrupts vimentin intermediate filaments, prevented histamine/OS-induced SNAP23 translocation, as well as VWF secretion. Immunofluorescence analysis revealed that the polarity of the vimentin intermediate filament network decreased after stimulation with histamine or OS. In addition, inhibition of protein kinase A (PKA) or G protein coupled receptor 68 (GPR68) eliminated the histamine/OS-induced phosphorylation of vimentin at Ser38 and secretion of VWF. Furthermore, syntaxin 7 might assist with the translocation of SNAP23 to the cell membrane, thus playing a role in promoting VWF secretion. The GPR68/PKA/vimentin signaling pathway may represent a novel mechanism for the regulation of SNAP23-mediated VWF secretion by ECs under OS and provide strategies for the prevention of atherosclerosis-related thrombosis.


Assuntos
Trombose , Fator de von Willebrand , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Histamina/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Filamentos Intermediários/metabolismo , Mecanotransdução Celular , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Estresse Mecânico , Trombose/metabolismo , Vimentina/metabolismo , Fator de von Willebrand/metabolismo
9.
Sheng Li Xue Bao ; 74(6): 894-902, 2022 Dec 25.
Artigo em Zh | MEDLINE | ID: mdl-36594378

RESUMO

Cardiovascular homeostasis is regulated by both physical and chemical factors. Vascular stiffness, a physical property of vessel, is crucial in maintaining the physiological function of vasculature. Vascular stiffness has been indicated to be correlated with hypertension, heart failure and other cardiovascular diseases. It has been the most widely accepted clinical index for assessment of vascular function and dysfunction. This paper reviews the commonly used experimental and clinical techniques for evaluating vascular stiffness including direct detection of the Young's modulus and indirect detection method that is based on ultrasound technique and others. Principles of these methodologies, as well as their advantages and disadvantages, are also presented here. Researchers and clinical staff are encouraged to choose the most suitable methods for detecting vascular stiffness according to their purposes and objects, so as to effectively evaluate vascular function.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Hipertensão , Rigidez Vascular , Humanos , Módulo de Elasticidade , Hipertensão/diagnóstico , Doenças Cardiovasculares/diagnóstico
10.
Macromol Rapid Commun ; 42(8): e2000433, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33103292

RESUMO

Aqueous multiphase systems have attracted a lot of interest recently espeically due to target applications in the biomedical field, cosmetics, and food. In turn, water-in-water Pickering emulsions are investigated frequently. In here, graphitic carbon nitride (g-CN) stabilized water-in-water Pickering emulsions are fabricated via the dextran and poly(ethylene glycol)-based aqueous two-phase system. Five different derivatives of g-CN as the Pickering stabilizer are described and the effect of g-CN concentration on droplet sizes is investigated. Stable emulsions (up to 16 weeks) are obtained that can be broken on purpose via various approaches, including dilution, surfactant addition, and most notably light irradiation. The novel approach of water-in-water emulsion stabilization via g-CN opens up considerable advances in aqueous multiphase systems and may also introduce photocatalytic properties.


Assuntos
Grafite , Água , Emulsões , Compostos de Nitrogênio , Tensoativos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa