RESUMO
Lipid-based formulations provide a nanotechnology platform that is widely used in a variety of biomedical applications because it has several advantageous properties including biocompatibility, reduced toxicity, relative ease of surface modifications, and the possibility for efficient loading of drugs, biologics, and nanoparticles. A combination of lipid-based formulations with magnetic nanoparticles such as iron oxide was shown to be highly advantageous in a growing number of applications including magnet-mediated drug delivery and image-guided therapy. Currently, lipid-based formulations are prepared by multistep protocols. Simplification of the current multistep procedures can lead to a number of important technological advantages including significantly decreased processing time, higher reaction yield, better product reproducibility, and improved quality. Here, we introduce a one-pot, single-step synthesis of drug-loaded magnetic multimicelle aggregates (MaMAs), which is based on controlled flow infusion of an iron oxide nanoparticle/lipid mixture into an aqueous drug solution under ultrasonication. Furthermore, we prepared molecular-targeted MaMAs by directional antibody conjugation through an Fc moiety using Cu-free click chemistry. Fluorescence imaging and quantification confirmed that antibody-conjugated MaMAs showed high cell-specific targeting that was enhanced by magnetic delivery.
Assuntos
Nanopartículas , Sistemas de Liberação de Medicamentos , Lipídeos , Fenômenos Magnéticos , Nanopartículas/química , Preparações Farmacêuticas , Reprodutibilidade dos TestesRESUMO
Superparamagnetic iron oxide nanoparticles (SPIONs) are characterized by their exceptional susceptibility and relaxivity at ultra-low field (ULF) regimes, make them a promising contrast agent (CA) for ULF MRI. Despite their distinct advantages, the translation of these properties into clinically valuable image contrast in ULF MRI remains underexplored. In this study, we investigate the use of SPIONs to generate in vivo MRI contrast at 6.5 mT within the organs and vascular system of rodents. This investigation includes comprehensive SPION characterization and phantom imaging experiments to validate the utility of SPIONs to produce positive image contrast and to facilitate phase-sensitive imaging at ULF. Optimized balanced steady-state free precession (bSSFP) and spoiled gradient echo (SPGR) MRI sequences are used to generate in vivo contrast by leveraging the distinctive properties of SPIONs at ULF. Imaging studies in rodents reveal positive organ contrast attainable in magnitude images, and MRI phase maps can be used to visualize the vascular system. This work demonstrates the effectiveness of SPIONs in enhancing preclinical organ and vascular imaging at ULF; it bridges the gap between the study of the distinctive physical properties of SPIONs and the demonstration of in vivo image contrast.
Assuntos
Meios de Contraste , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Animais , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Ratos , Camundongos , Masculino , Ratos Sprague-DawleyRESUMO
HDM2 binds to an alpha-helical transactivation domain of p53, inhibiting its tumor suppressive functions. A miniaturized thermal denaturation assay was used to screen chemical libraries, resulting in the discovery of a novel series of benzodiazepinedione antagonists of the HDM2-p53 interaction. The X-ray crystal structure of improved antagonists bound to HDM2 reveals their alpha-helix mimetic properties. These optimized molecules increase the transcription of p53 target genes and decrease proliferation of tumor cells expressing wild-type p53.
Assuntos
Benzodiazepinas/síntese química , Proteínas Nucleares/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteína Supressora de Tumor p53/agonistas , Benzodiazepinas/química , Benzodiazepinas/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Técnicas de Química Combinatória , Cristalografia por Raios X , Humanos , Modelos Moleculares , Mimetismo Molecular , Estrutura Molecular , Proteínas Proto-Oncogênicas c-mdm2 , Estereoisomerismo , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/biossínteseRESUMO
A study of the S1 binding of lead 5-methylthiothiophene amidine 3, an inhibitor of urokinase-type plasminogen activator, was undertaken by the introduction of a variety of substituents at the thiophene 5-position. The 5-alkyl substituted and unsubstituted thiophenes were prepared using organolithium chemistry. Heteroatom substituents were introduced at the 5-position using a novel displacement reaction of 5-methylsulfonylthiophenes and the corresponding oxygen or sulfur anions. Small alkyl group substitution at the 5-position provided inhibitors equipotent with but possessing improved solubility.
Assuntos
Amidinas/síntese química , Amidinas/farmacologia , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/farmacologia , Tiofenos/síntese química , Tiofenos/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Alquilação , Indicadores e Reagentes , Compostos de Lítio/química , Ligação Proteica , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/farmacologiaRESUMO
Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that functions as a chloride channel. Nucleotide-binding domain 1 (NBD1), one of two ABC domains in CFTR, also contains sites for the predominant CF-causing mutation and, potentially, for regulatory phosphorylation. We have determined crystal structures for mouse NBD1 in unliganded, ADP- and ATP-bound states, with and without phosphorylation. This NBD1 differs from typical ABC domains in having added regulatory segments, a foreshortened subdomain interconnection, and an unusual nucleotide conformation. Moreover, isolated NBD1 has undetectable ATPase activity and its structure is essentially the same independent of ligand state. Phe508, which is commonly deleted in CF, is exposed at a putative NBD1-transmembrane interface. Our results are consistent with a CFTR mechanism, whereby channel gating occurs through ATP binding in an NBD1-NBD2 nucleotide sandwich that forms upon displacement of NBD1 regulatory segments.