Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(40): 17167-17174, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32924478

RESUMO

Encapsulation of metal nanocatalysts by support-derived materials is well known as a classical strong metal-support interaction (SMSI) effect that occurs almost exclusively with active oxide supports and often blocks metal-catalyzed surface reactions. In the present work this classical SMSI process has been surprisingly observed between metal nanoparticles, e.g., Ni, Fe, Co, and Ru, and inert hexagonal boron nitride (h-BN) nanosheets. We find that weak oxidizing gases such as CO2 and H2O induce the encapsulation of nickel (Ni) nanoparticles by ultrathin boron oxide (BOx) overlayers derived from the h-BN support (Ni@BOx/h-BN) during the dry reforming of methane (DRM) reaction. In-situ surface characterization and theory calculations reveal that surface B-O and B-OH sites in the formed BOx encapsulation overlayers work synergistically with surface Ni sites to promote the DRM process rather than blocking the surface reactions.

2.
Nat Commun ; 14(1): 613, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739275

RESUMO

Uncovering how hydrogen transfers and what factors control hydrogen conductivity on solid surface is essential for enhancing catalytic performance of H-involving reactions, which is however hampered due to the structural complexity of powder catalysts, in particular, for oxide catalysts. Here, we construct stripe-like MnO(001) and grid-like Mn3O4(001) monolayers on Pt(111) substrate and investigate hydrogen spillover atop. Atomic-scale visualization demonstrates that hydrogen species from Pt diffuse unidirectionally along the stripes on MnO(001), whereas it exhibits an isotropic pathway on Mn3O4(001). Dynamic surface imaging in H2 atmosphere reveals that hydrogen diffuses 4 times more rapidly on MnO than the case on Mn3O4, which is promoted by one-dimension surface-lattice-confinement effect. Theoretical calculations indicate that a uniform and medium O-O distance favors hydrogen diffusion while low-coordinate surface O atom inhibits it. Our work illustrates the surface-lattice-confinement effect of oxide catalysts on hydrogen spillover and provides a promising route to improve the hydrogen spillover efficiency.

3.
J Phys Chem Lett ; 13(28): 6566-6570, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35833718

RESUMO

Surface hydroxylation over oxide catalysts often occurs in many catalytic processes involving H2 and H2O, which is considered to play an important role in elementary steps of the reactions. Here, monolayer CoO and CoOHx nanoislands on Pt(111) are used as inverse model catalysts to study the effect of surface hydroxylation on the stability of Co oxide overlayers in O2. Surface science experiments indicate that hydroxyl groups formed on CoO nanoislands produced by deuterium-spillover can enhance oxidation resistance of the Co oxide nanostructures. Theoretical calculation shows that the interfacial adhesion between CoO and Pt is linearly strengthened with the increasing hydroxylation degree of CoO surface. Thus, the interface confinement effect between CoO and Pt can be enhanced by the surface hydroxylation due to the more reduced Co ions and stronger Co-Pt bonding at the CoOHx/Pt interface.

4.
J Phys Chem Lett ; 12(5): 1443-1452, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33523659

RESUMO

The rational design and controlled construction of active centers remain grand challenges in heterogeneous catalysis, in particular for oxide catalysts with complex surface and interface structures. This work describes a facile way in the design of highly active Ni-O Lewis pairs for water activation where Ni and O sites act as Lewis acid and base, respectively. Surface science experiments indicate that dissociative adsorption of water occurs at edges of NiOx nanoislands grown on Au(111) and NiOx-Ni interfaces formed by further depositing metallic Ni layers along the edges of NiOx nanoislands. Enhanced activity of Ni-O Lewis pairs at the NiOx-Ni interface has been demonstrated by theoretical calculations, which are attributed to the higher Lewis acidity of metallic Ni sites and synergy of the metal and oxide components. Moreover, proton can migrate away from the NiOx-Ni interface and refresh the O base sites, leading to further hydroxylation of the neighboring Ni acid sites.

5.
J Phys Chem Lett ; 12(17): 4187-4194, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33900088

RESUMO

The strong metal-support interaction (SMSI) is one of the most important concepts in heterogeneous catalysis, which has been widely investigated between metals and active oxides triggered by reductive atmospheres. Here, we report the oxidative strong metal-support interaction (O-SMSI) effect between Pt nanoparticles (NPs) and inert hexagonal boron nitride (h-BN) sheets, in which Pt NPs are encapsulated by oxidized boron (BOx) overlayers derived from the h-BN support under oxidative conditions. De-encapsulation of Pt NPs has been achieved by washing in water, and the residual ultrathin BOx overlayers work synergistically with surface Pt sites for enhancing CO oxidation reaction. The O-SMSI effect is also present in other h-BN-supported metal catalysts such as Au, Rh, Ru, and Ir within different oxidative atmospheres including O2 and CO2, which is determined by metal-boron interaction and O affinity of metals.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa