Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(25): 6067-6080.e13, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34852238

RESUMO

The human monoclonal antibody (HmAb) C10 potently cross-neutralizes Zika virus (ZIKV) and dengue virus. Analysis of antibody fragment (Fab) C10 interactions with ZIKV and dengue virus serotype 2 (DENV2) particles by cryoelectron microscopy (cryo-EM) and amide hydrogen/deuterium exchange mass spectrometry (HDXMS) shows that Fab C10 binding decreases overall ZIKV particle dynamics, whereas with DENV2, the same Fab causes increased dynamics. Testing of different Fab C10:DENV2 E protein molar ratios revealed that, at higher Fab ratios, especially at saturated concentrations, the Fab enhanced viral dynamics (detected by HDXMS), and observation under cryo-EM showed increased numbers of distorted particles. Our results suggest that Fab C10 stabilizes ZIKV but that with DENV2 particles, high Fab C10 occupancy promotes E protein dimer conformational changes leading to overall increased particle dynamics and distortion of the viral surface. This is the first instance of a broadly neutralizing antibody eliciting virus-specific increases in whole virus particle dynamics.


Assuntos
Anticorpos Neutralizantes , Vírus da Dengue , Dengue , Proteínas do Envelope Viral , Infecção por Zika virus , Zika virus , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/imunologia , Reações Cruzadas , Dengue/imunologia , Dengue/virologia , Vírus da Dengue/imunologia , Vírus da Dengue/fisiologia , Humanos , Ligação Proteica , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Zika virus/imunologia , Zika virus/fisiologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
2.
FASEB J ; 38(16): e70014, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39183544

RESUMO

End-ischemic normothermic mechanical perfusion (NMP) could provide a curative treatment to reduce cholestatic liver injury from donation after circulatory death (DCD) in donors. However, the underlying mechanism remains elusive. Our previous study demonstrated that air-ventilated NMP could improve functional recovery of DCD in a preclinical NMP rat model. Here, metabolomics analysis revealed that air-ventilated NMP alleviated DCD- and cold preservation-induced cholestatic liver injury, as shown by the elevated release of alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin, and γ-glutamyl transferase (GGT) in the perfusate (p < .05) and the reduction in the levels of bile acid metabolites, including ω-muricholic acid, glycohyodeoxycholic acid, glycocholic acid, and glycochenodeoxycholate (GCDC) in the perfused livers (p < .05). In addition, the expression of the key bile acid metabolism enzyme UDP-glucuronosyltransferase 1A1 (UGT1A1), which is predominantly expressed in hepatocytes, was substantially elevated in the DCD rat liver, followed by air-ventilated NMP (p < .05), and in vitro, this increase was induced by decreased GCDC and hypoxia-reoxygenation in the hepatic cells HepG2 and L02 (p < .05). Knockdown of UGT1A1 in hepatic cells by siRNA aggravated hepatic injury caused by GCDC and hypoxia-reoxygenation, as indicated by the ALT and AST levels in the supernatant. Mechanistically, UGT1A1 is transcriptionally regulated by peroxisome proliferator-activator receptor-γ (PPAR-γ) under hypoxia-physoxia. Taken together, our data revealed that air-ventilated NMP could alleviate DCD- and cold preservation-induced cholestatic liver injury through PPAR-γ/UGT1A1 axis. Based on the results from this study, air-ventilated NMP confers a promising approach for predicting and alleviating cholestatic liver injury through PPAR-γ/UGT1A1 axis.


Assuntos
PPAR gama , Animais , Ratos , PPAR gama/metabolismo , PPAR gama/genética , Masculino , Humanos , Glucuronosiltransferase/metabolismo , Glucuronosiltransferase/genética , Fígado/metabolismo , Fígado/patologia , Colestase/metabolismo , Perfusão , Ratos Sprague-Dawley , Preservação de Órgãos/métodos , Transplante de Fígado
3.
Cell Mol Life Sci ; 81(1): 167, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581570

RESUMO

Hepatocellular carcinoma (HCC) is a malignant tumor with high incidence and mortality rates. NFKBIZ, a member of the nuclear factor kappa B inhibitory family, is closely related to tumor progression. However, the precise role of NFKBIZ in HCC remains unclear. To explore this, we conducted a series of experiments from clinic to cells. Western blot and qPCR revealed a significant downregulation of NFKBIZ in human HCC tissues. Clinical character analysis showed that the patients with lower NFKBIZ expression had poorer prognosis and higher clinical stage. By using CCK-8, wound healing, transwell invasion and migration assay, we discovered that NFKBIZ expression was reversely associated with the proliferation, invasion, and migration ability of HCC cells in vitro. Additionally, the results obtained from xenograft assay and lung metastasis models showed that NFKBIZ overexpression inhibited the growth and metastasis of HCC cells in vivo. Western blot and immunofluorescence assay further revealed that NFKBIZ mediated HCC cell growth and migration by regulating NFκB signaling transduction. Finally, flow cytometry, protein degradation assay and Co-immunoprecipitation indicated that TRIM16 can enhance NFKBIZ ubiquitination by direct interactions at its K48 site, which may thereby alleviate HCC cell apoptosis to induce the insensitivity to sorafenib. In conclusion, our study demonstrated that NFKBIZ regulated HCC tumorigenesis and metastasis by mediating NFκB signal transduction and TRIM16/NFKBIZ/NFκB axis may be the underlying mechanism of sorafenib insensitivity in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Sorafenibe/farmacologia , Linhagem Celular Tumoral , Movimento Celular , Transdução de Sinais , Carcinogênese/genética , Transformação Celular Neoplásica , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
4.
Oncologist ; 29(4): e487-e497, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37874924

RESUMO

BACKGROUND: The difference in the prognoses between treatment with surgical therapy and continuation of local-plus-systemic therapy following successful down-staging of intermediate-advanced hepatocellular carcinoma (HCC) remains unclear. METHODS: Data of 405 patients with intermediate-advanced HCC treated at 30 hospitals across China from January 2017 to July 2022 were retrospectively reviewed. All patients received local-plus-systemic therapy and were divided into the surgical (n = 100) and nonsurgical groups (n = 305) according to whether they received surgical therapy. The differences between long-term prognoses of the 2 groups were compared. Subgroup analysis was performed in 173 HCC patients who met the criteria for surgical resection following down-staging. RESULTS: Multivariable analysis of all patients showed that surgical therapy, hazard ratio (HR): 0.289, 95% confidence interval, CI, 0.136-0.613) was a protective factor for overall survival (OS), but not for event-free survival (EFS). Multivariable analysis of 173 intermediate-advanced HCC patients who met the criteria for surgical resection after conversion therapy showed that surgical therapy (HR: 0.282, 95% CI, 0.121-0.655) was a protective factor for OS, but not for EFS. Similar results were obtained after propensity score matching. For patients with Barcelona Clinic Liver Cancer stage B (HR: 0.171, 95% CI, 0.039-0.751) and C (HR: 0.269, 95% CI, 0.085-0.854), surgical therapy was also a protective factor for OS. CONCLUSIONS: Overall, for patients with intermediate-advanced HCC who underwent local-plus-systemic therapies, surgical therapy is a protective factor for long-term prognosis and can prolong OS, and for those who met the surgical resection criteria after conversion therapy, surgical therapy is recommended.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/cirurgia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , Estadiamento de Neoplasias , Prognóstico , Hepatectomia
5.
Eur J Immunol ; 53(3): e2250122, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597350

RESUMO

Autoimmune demyelinating diseases can be induced by an immune response against myelin peptides; however, the exact mechanism underlying the development of such diseases remains unclear. In experimental autoimmune encephalomyelitis, we found that the clearance of exogenous myelin antigen at the peak of the primary immune response is key to the pathogenesis of the disease. The generation of effector T cells requires continuous antigen stimulation, whereas redundant antigen traps and exhausts effector T cells in the periphery, which induces resistance to the disease. Moreover, insufficient antigenic stimulation fails to induce disease efficiently owing to insufficient numbers of effector T cells. When myelin antigen is entirely cleared, the number of effector T cells reaches a peak, which facilitates infiltration of more effector T cells into the central nervous system. The peripheral antigen clearance initiates the first wave of effector T cell entry into the central nervous system and induces chronic inflammation. The inflamed central nervous system recruits the second wave of effector T cells that worsen inflammation, resulting in loss of self-tolerance. These findings provide new insights into the mechanism underlying the development of autoimmune demyelinating diseases, which may potentially impact future treatments.


Assuntos
Encefalomielite Autoimune Experimental , Animais , Linfócitos T , Sistema Nervoso Central/patologia , Inflamação , Imunidade
6.
Cell Biol Int ; 48(1): 31-45, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37655528

RESUMO

Arachidonic acid metabolism plays a crucial role in the development and progression of inflammatory and metabolic liver diseases. However, its role in hepatocellular carcinoma (HCC) remains unclear. In this study, we investigated the expression of key genes involved in the arachidonic acid metabolism pathway in HCC using a combination of bioinformatics, proteomics and immunohistochemistry analyses. Through a comprehensive analysis of publicly available datasets, clinical HCC tissues, and tissue microarrays, we compared the expression of hepatic arachidonic acid metabolic genes. We observed significant downregulation of cytochrome P450 (CYP450) pathway genes at both the messenger RNA and protein levels in HCC tissues compared to normal liver tissues. Furthermore, we observed a strong correlation between the deregulation of the arachidonic acid metabolism CYP450 pathway and the pathological features and prognosis of HCC. Specifically, the expression of CYP2C8/9/18/19 was significantly correlated with pathological grade (r = -.484, p < .0001), vascular invasion (r = -.402, p < .0001), aspartate transaminase (r = -.246, p = .025), gamma-glutamyl transpeptidase (r = -.252, p = .022), alkaline phosphatase (r = -.342, p = .002), alpha-fetoprotein (r = -.311, p = .004) and carbohydrate antigen 19-9 (r = -.227, p = .047). Moreover, we discovered a significant association between CYP450 pathway activity and vascular invasion in HCC. Collectively, these data indicate that arachidonic acid CYP450 metabolic pathway deregulation is implicated in HCC progression and may be a potential predictive factor for early recurrence in patients with HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Ácido Araquidônico , Sistema Enzimático do Citocromo P-450/genética
7.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 24-30, 2024 Jan 20.
Artigo em Zh | MEDLINE | ID: mdl-38322521

RESUMO

Liquid-liquid phase separation (LLPS) is a reversible process, during which biological macromolecules, including proteins and nucleic acids, condense into liquid membraneless organelles under the influence of weak multivalent interactions. Currently, fluorescence recovery after photobleaching is the primary method used to detect the phase separation of biological macromolecules. Recent studies have revealed the link between abnormal LLPS and the pathogenesis and development of various human cancers. Through phase separation or abnormal phase separation, tumor-related biological macromolecules, such as mRNA, long noncoding RNAs (lncRNAs), and tumor-related proteins, can affect transcriptional translation and DNA damage repair, regulate the autophagy and ferroptosis functions of cells, and thus regulate the development of various tumors. In this review, we summarized the latest research findings on the mechanism of LLPS in the pathogenesis and progression of tumors and elaborated on the promotion or inhibition of autophagy, tumor immunity, DNA damage repair, and cell ferroptosis after abnormal phase separation of biomolecules, including mRNA, lncRNA, and proteins, which subsequently affects the pathogenesis and progression of tumors. According to published findings, many biological macromolecules can regulate transcriptional translation, expression, post-transcriptional modification, cell signal transduction, and other biological processes through phase separation. Therefore, further expansion of the research field of phase separation and in-depth investigation of its molecular mechanisms and regulatory processes hold extensive research potential.


Assuntos
Neoplasias , Separação de Fases , Humanos , Proteínas , RNA Mensageiro
8.
Mol Carcinog ; 62(10): 1599-1614, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37449789

RESUMO

Hepatocellular carcinoma (HCC) is the sixth most common cancer and the fourth leading cause of tumor-related deaths worldwide. N6-methyladenosine (m6 A) mediates RNA metabolism in tumor biology. However, the regulatory role of YTHDF3, an m6 A reader, in HCC progression and its underlying mechanisms remains unclear. Therefore, this study aims to investigate the oncogenic effect of YTHDF3 on HCC progression via the epigenetic regulation of m6 A-modified mRNAs. The expression levels of YTHDF3 in HCC tissues and matched adjacent liver tissues were detected using western blot analysis, immunohistochemistry, and quantitative real-time polymerase chain reaction. The function of YTHDF3 in HCC progression and its underlying mechanisms have been studied both in vitro and in vivo. YTHDF3 expression was significantly higher in HCC tissues than in paracancerous liver tissues. YTHDF3 was also significantly upregulated in HCC with microvascular invasion (MVI) compared to that in HCC without MVI. YTHDF3 overexpression facilitated the proliferation, invasion, and migration of HCC cells both in vitro and in vivo. However, the YTHDF3 knockdown resulted in an inverse trend. Mechanistically, YTHDF3 enhanced the translation and stability of the m6 A-modified epidermal growth factor receptor (EGFR) mRNA, which activated the downstream EGFR/signal transducer and activator of transcription 3 (STAT3) and epithelial-mesenchymal transition (EMT) oncogenic pathways. YTHDF3 enhanced the stability and translation of m6 A-modified EGFR mRNA and stimulated HCC progression via the YTHDF3/m6 A-EGFR/STAT3 and EMT pathways. These findings reveal that YTHDF3 plays a significant role in regulating HCC progression, suggesting a promising and novel target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Epigênese Genética , Transição Epitelial-Mesenquimal/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , RNA Mensageiro , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
9.
Mol Carcinog ; 62(7): 963-974, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37042569

RESUMO

Abnormal cholesterol synthesis plays a crucial role in the development of hepatocellular carcinoma (HCC). Sterol regulatory element-binding protein 2 (SREBP2) is involved in cholesterol synthesis by translocating to the nucleus where it stimulates the transcription of genes encoding enzymes involved in the cholesterol synthesis pathway. However, the function and regulatory mechanism of SREBP2 in HCC remain unclear. In this study, we aimed to gain a better understanding of the effects of SREBP2 and its functional mechanism in HCC. In 20 HCC patients, we demonstrated that SREBP2 was highly expressed in HCC specimens, relative to their peritumoral tissue, and that higher expression correlated positively with a poor prognosis in these patients. Moreover, higher SREBP2 levels in the nucleus enhanced the occurrence of microvascular invasion, whereas inhibition of SREBP2 nuclear translocation by fatostatin markedly suppressed the migration and invasion of HCC cells via the epithelial-mesenchymal transition (EMT) process. The effects of SREBP2 were subject to functional activity of large tumor suppressor kinase (LATS), whereas inhibition of LATS promoted nuclear translocation of SREBP2, as observed in hepatoma cells and a subset of subcutaneous tumor samples from nude mice. In conclusion, SREBP2 enhances the invasion and metastasis of HCC cells by promoting EMT, which can be strengthened by the repression of LATS. Therefore, SREBP2 may serve as a novel therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Camundongos Nus , Humanos
10.
J Transl Med ; 21(1): 68, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732743

RESUMO

BACKGROUND: Intratumoral microbial communities have been recently discovered to exist in a variety of cancers and have been found to be intricately involved in tumour progression. Therefore, investigating the profiles and functions of intratumoral microbial distribution in hepatocellular carcinoma (HCC) is imperative. METHODS: To verify the presence of microorganisms in HCC, we performed fluorescence in situ hybridization (FISH) using HCC tissues and conducted MiSeq using 99 HCC and paracancerous tissues to identify the key microorganisms and changes in metabolic pathways affecting HCC progression through a variety of bioinformatics methods. RESULTS: Microbial diversity was significantly higher in HCC tissues than in adjacent tissues. The abundances of microorganisms such as Enterobacteriaceae, Fusobacterium and Neisseria were significantly increased in HCC tissues, while the abundances of certain antitumour bacteria such as Pseudomonas were decreased. Processes such as fatty acid and lipid synthesis were significantly enhanced in the microbiota in HCC tissues, which may be a key factor through which intratumoral microbes influence tumour progression. There were considerable differences in the microbes and their functions within tumour tissue collected from patients with different clinical features. CONCLUSION: We comprehensively evaluated the intratumoral microbial atlas of HCC tissue and preliminarily explored the mechanism of the effects of the microbial community involving changes in lipid metabolism and effects on HCC progression, which lays the foundation for further research in this field.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Hibridização in Situ Fluorescente , Biologia Computacional
11.
Hepatology ; 75(2): 338-352, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34455616

RESUMO

BACKGROUND AND AIMS: Hepatic ischemia-reperfusion injury (IRI) is a common complication of hepatectomy and liver transplantation. However, the mechanisms underlying hepatic IRI have not been fully elucidated. Regulator of G-protein signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates the G-protein and mitogen-activated protein kinase (MAPK) signaling pathways. However, the role of RGS14 in hepatic IRI remains unclear. APPROACH AND RESULTS: We found that RGS14 expression increased in mice subjected to hepatic ischemia-reperfusion (IR) surgery and during hypoxia reoxygenation in hepatocytes. We constructed global RGS14 knockout (RGS14-KO) and hepatocyte-specific RGS14 transgenic (RGS14-TG) mice to establish 70% hepatic IRI models. Histological hematoxylin and eosin staining, levels of alanine aminotransferase and aspartate aminotransferase, expression of inflammatory factors, and apoptosis were used to assess liver damage and function in these models. We found that RGS14 deficiency significantly aggravated IR-induced liver injury and activated hepatic inflammatory responses and apoptosis in vivo and in vitro. Conversely, RGS14 overexpression exerted the opposite effect of the RGS14-deficient models. Phosphorylation of TGF-ß-activated kinase 1 (TAK1) and its downstream effectors c-Jun N-terminal kinase (JNK) and p38 increased in the liver tissues of RGS14-KO mice but was repressed in those of RGS14-TG mice. Furthermore, inhibition of TAK1 phosphorylation rescued the effect of RGS14 deficiency on JNK and p38 activation, thus blocking the inflammatory responses and apoptosis. CONCLUSIONS: RGS14 plays a protective role in hepatic IR by inhibiting activation of the TAK1-JNK/p38 signaling pathway. This may be a potential therapeutic strategy for reducing incidences of hepatic IRI in the future.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Alanina Transaminase/metabolismo , Animais , Apoptose , Aspartato Aminotransferases/metabolismo , Hipóxia Celular , Células Cultivadas , Ativação Enzimática , Hepatócitos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Hepatology ; 76(1): 94-111, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34735734

RESUMO

BACKGROUND AND AIMS: Hepatic ischemia-reperfusion (HIR) injury, a common clinical complication of liver transplantation and resection, affects patient prognosis. Ring finger protein 5 (RNF5) is an E3 ubiquitin ligase that plays important roles in endoplasmic reticulum stress, unfolded protein reactions, and inflammatory responses; however, its role in HIR is unclear. APPROACH AND RESULTS: RNF5 expression was significantly down-regulated during HIR in mice and hepatocytes. Subsequently, RNF5 knockdown and overexpression of cell lines were subjected to hypoxia-reoxygenation challenge. Results showed that RNF5 knockdown significantly increased hepatocyte inflammation and apoptosis, whereas RNF5 overexpression had the opposite effect. Furthermore, hepatocyte-specific RNF5 knockout and transgenic mice were established and subjected to HIR, and RNF5 deficiency markedly aggravated liver damage and cell apoptosis and activated hepatic inflammatory responses, whereas hepatic RNF5 transgenic mice had the opposite effect compared with RNF5 knockout mice. Mechanistically, RNF5 interacted with phosphoglycerate mutase family member 5 (PGAM5) and mediated the degradation of PGAM5 through K48-linked ubiquitination, thereby inhibiting the activation of apoptosis-regulating kinase 1 (ASK1) and its downstream c-Jun N-terminal kinase (JNK)/p38. This eventually suppresses the inflammatory response and cell apoptosis in HIR. CONCLUSIONS: We revealed that RNF5 protected against HIR through its interaction with PGAM5 to inhibit the activation of ASK1 and the downstream JNK/p38 signaling cascade. Our findings indicate that the RNF5-PGAM5 axis may be a promising therapeutic target for HIR.


Assuntos
Proteínas de Membrana , Fosfoproteínas Fosfatases , Traumatismo por Reperfusão , Ubiquitina-Proteína Ligases , Animais , Apoptose , Humanos , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Fosfoproteínas Fosfatases/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
13.
Cell Commun Signal ; 21(1): 343, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031146

RESUMO

Non-coding RNA has aroused great research interest recently, they play a wide range of biological functions, such as regulating cell cycle, cell proliferation, and intracellular substance metabolism. Piwi-interacting RNAs (piRNAs) are emerging small non-coding RNAs that are 24-31 nucleotides in length. Previous studies on piRNAs were mainly limited to evaluating the binding to the PIWI protein family to play the biological role. However, recent studies have shed more lights on piRNA functions; aberrant piRNAs play unique roles in many human diseases, including diverse lethal cancers. Therefore, understanding the mechanism of piRNAs expression and the specific functional roles of piRNAs in human diseases is crucial for developing its clinical applications. Presently, research on piRNAs mainly focuses on their cancer-specific functions but lacks investigation of their expressions and epigenetic modifications. This review discusses piRNA's biogenesis and functional roles and the recent progress of functions of piRNA/PIWI protein complexes in human diseases. Video Abstract.


Assuntos
Neoplasias , RNA de Interação com Piwi , Humanos , RNA Interferente Pequeno/metabolismo , Proteínas/genética , Epigênese Genética , Neoplasias/genética , Neoplasias/metabolismo
14.
Mol Cancer ; 21(1): 207, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36320056

RESUMO

Exosomes are well-known key mediators of intercellular communication and contribute to various physiological and pathological processes. Their biogenesis involves four key steps, including cargo sorting, MVB formation and maturation, transport of MVBs, and MVB fusion with the plasma membrane. Each process is modulated through the competition or coordination of multiple mechanisms, whereby diverse repertoires of molecular cargos are sorted into distinct subpopulations of exosomes, resulting in the high heterogeneity of exosomes. Intriguingly, cancer cells exploit various strategies, such as aberrant gene expression, posttranslational modifications, and altered signaling pathways, to regulate the biogenesis, composition, and eventually functions of exosomes to promote cancer progression. Therefore, exosome biogenesis-targeted therapy is being actively explored. In this review, we systematically summarize recent progress in understanding the machinery of exosome biogenesis and how it is regulated in the context of cancer. In particular, we highlight pharmacological targeting of exosome biogenesis as a promising cancer therapeutic strategy.


Assuntos
Exossomos , Neoplasias , Humanos , Exossomos/metabolismo , Corpos Multivesiculares/metabolismo , Neoplasias/metabolismo , Comunicação Celular , Membrana Celular/metabolismo
15.
Biochem Biophys Res Commun ; 595: 47-53, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35093640

RESUMO

Brain death (BD) induces a systemic inflammatory response that influences donor liver quality. Protease-activated receptor 4 (PAR4) is a thrombin receptor that mediates platelet activation and is involved in inflammatory and apoptotic processes. Therefore, we investigated the role of PAR4 blockade in liver injury induced by BD and its associated mechanisms. In this study, we constructed a BD rat model and treated rats with TcY-NH2, a selective PAR4 antagonist, to block PAR4 signaling at the onset of BD induction. Our results revealed that PAR4 protein expression increased in the livers of rats with BD. PAR4 blockade alleviated liver injury induced by BD, as indicated by lower serum ALT/AST levels and an improvement in histomorphology. Blood platelet activation and hepatic platelet accumulation in BD rats were reduced by PAR4 blockade. Additionally, PAR4 blockade attenuated the inflammatory response and apoptosis in the livers of BD rats. Moreover, the activation of NF-κB and MAPK pathways induced by BD was inhibited by PAR4 blockade. Thus, our results suggest that PAR4 contributes to liver injury induced by BD by regulating inflammation and apoptosis through the NF-κB and MAPK pathways. Thus, PAR4 blockade may provide a feasible approach to improve the quality of organs from BD donors.


Assuntos
Morte Encefálica/metabolismo , Fígado/efeitos dos fármacos , Oligopeptídeos/farmacologia , Receptores de Trombina/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Morte Encefálica/fisiopatologia , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Fígado/metabolismo , Fígado/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , NF-kappa B/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de Trombina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Hepatology ; 73(2): 738-758, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32343849

RESUMO

BACKGROUND AND AIMS: Hepatic ischemia-reperfusion (I/R) injury, which mainly involves inflammatory responses and apoptosis, is a common cause of organ dysfunction in liver transplantation (LT). As a critical mediator of inflammation and apoptosis in various cell types, the role of tripartite motif-containing (TRIM) 27 in hepatic I/R injury remains worthy of study. APPROACH AND RESULTS: This study systemically evaluated the putative role of TRIM27/transforming growth factor ß-activated kinase 1 (TAK1)/JNK (c-Jun N-terminal kinase)/p38 signaling in hepatic I/R injury. TRIM27 expression was significantly down-regulated in liver tissue from LT patients, mice subjected to hepatic I/R surgery, and hepatocytes challenged by hypoxia/reoxygenation (H/R) treatment. Subsequently, using global Trim27 knockout mice (Trim27-KO mice) and hepatocyte-specific Trim27 transgenic mice (Trim27-HTG mice), TRIM27 functions to ameliorate liver damage, reduce the inflammatory response, and prevent cell apoptosis. In parallel in vitro studies, activating TRIM27 also prevented H/R-induced hepatocyte inflammation and apoptosis. Mechanistically, TRIM27 constitutively interacted with the critical components, TAK1 and TAK1 binding protein 2/3 (TAB2/3), and promoted the degradation of TAB2/3, leading to inactivation of TAK1 and the subsequent suppression of downstream JNK/p38 signaling. CONCLUSIONS: TRIM27 is a key regulator of hepatic I/R injury by mediating the degradation of TAB2/3 and suppression of downstream TAK1-JNK/p38 signaling. TRIM27 may be a promising approach to protect the liver against I/R-mediated hepatocellular damage in transplant recipients.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Transplante de Fígado/efeitos adversos , Fígado/irrigação sanguínea , Proteínas Nucleares/metabolismo , Traumatismo por Reperfusão/patologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Biópsia , Linhagem Celular , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Humanos , Fígado/patologia , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteólise , RNA-Seq , Traumatismo por Reperfusão/etiologia , Ubiquitina-Proteína Ligases/genética
17.
Cytokine ; 159: 156017, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054963

RESUMO

BACKGROUND: Small-for-size syndrome following liver surgery is characterized by compromised liver regeneration. Liver macrophages play key roles in initiating liver regeneration, and modulation of the immune microenvironment through macrophages may accelerate liver regeneration. In our current study, we aimed to explore the involvement of innate immunity after extended hepatectomy in rats and humans, and to test the effect of immunity modulation on small-for-size liver regeneration in rats. METHODS: Serum programmed cell death protein ligand 1 (PD-L1) was measured after major hepatectomy and minor hepatectomy in humans and rats. Liver regeneration in rats was assessed using liver-to-body weight ratio and kinetic growth rate, antigen Ki67 and proliferating cell nuclear antigen (PCNA), and macrophage polarization was assessed by inducible nitric oxide synthase (iNOS), cluster of differentiation protein 163 (CD163) expression by immunohistochemistry (IHC) and iNOS/CD163 ratio. Rat hepatocyte BRL or human hepatocyte LO2 were co-cultured with rat bone marrow-derived macrophages or human macrophages THP-1. BMS-1 or Nivolumab were used to block programmed cell death protein 1 (PD-1)/PD-L1 in vitro and in vivo. RESULTS: PD-L1 expressions were significantly higher following major hepatectomy compared to minor resection in both humans and rats; compromised liver regeneration after extended hepatectomy in rats was associated with PD-L1 upregulation and M2 macrophage polarization. M1 macrophages increased proliferation of hepatocytes through interleukin-6 (IL-6), and M2 macrophages decreased hepatocyte proliferation; blocking PD-1/PD-L1 reversed the effect of M2 macrophages on the survival of hepatocytes in vitro and promoted liver growth in rats through M1 macrophage polarization. CONCLUSION: Compromised hepatic regeneration following extended hepatectomy is characterized by M2 macrophage polarization and upregulated PD-L1 expression. Blocking PD-1/PD-L1 may enhance small-for-size liver regeneration by inducing M1 macrophage polarization.


Assuntos
Hepatectomia , Hepatopatias , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Antígeno B7-H1/metabolismo , Humanos , Interleucina-6/metabolismo , Antígeno Ki-67/metabolismo , Ligantes , Óxido Nítrico Sintase Tipo II/metabolismo , Nivolumabe/metabolismo , Receptor de Morte Celular Programada 1 , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos
18.
BMC Cancer ; 22(1): 288, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35300639

RESUMO

Osteosarcoma (OS) is one of the most common primary bone malignant tumors. Osteoclasts have been shown to have a valuable role in OS. In the present study, we analyzed the differentiation states of osteoclasts in OS and their prognostic significance based on integrated scRNA-seq and bulk RNA-seq data. Osteoclasts in distinct differentiation states were characterized, and 661 osteoclasts differentiation-related genes (ODRGs) were obtained. ORDGs in distinct differentiation states were enriched in distinct functions and pathways. TPM1, S100A13, LOXL1, PSMD10, ST3GAL4, PEF1, SERPINE2, TUBB, FAM207A, TUBA1A, and DCN were identified as the significant survival-predicting ODRGs. We successfully developed a risk score model based on these survival-predicting ODRGs. In addition, we generated a nomogram applicable for clinical with both ODRGs signatures and clinicopathological parameters, and validated in OS cohorts to predict OS patient outcome. This study proposed and verified the important roles of osteoclasts differentiation in the prognosis of patients with OS, suggesting promising therapeutic targets for OS.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Diferenciação Celular/genética , Osteoclastos/citologia , Osteossarcoma/genética , Adolescente , Neoplasias Ósseas/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Osteoclastos/patologia , Osteossarcoma/patologia , Prognóstico , Modelos de Riscos Proporcionais , RNA-Seq , Fatores de Risco , Análise de Célula Única , Adulto Jovem
19.
EMBO Rep ; 21(9): e50308, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32644293

RESUMO

The transcription factor forkhead box P3 (FOXP3) is essential for the development of regulatory T cells (Tregs) and their function in immune homeostasis. Previous studies have shown that in natural Tregs (nTregs), FOXP3 can be regulated by polyubiquitination and deubiquitination. However, the molecular players active in this pathway, especially those modulating FOXP3 by deubiquitination in the distinct induced Treg (iTreg) lineage, remain unclear. Here, we identify the ubiquitin-specific peptidase 44 (USP44) as a novel deubiquitinase for FOXP3. USP44 interacts with and stabilizes FOXP3 by removing K48-linked ubiquitin modifications. Notably, TGF-ß induces USP44 expression during iTreg differentiation. USP44 co-operates with USP7 to stabilize and deubiquitinate FOXP3. Tregs genetically lacking USP44 are less effective than their wild-type counterparts, both in vitro and in multiple in vivo models of inflammatory disease and cancer. These findings suggest that USP44 plays an important role in the post-translational regulation of Treg function and is thus a potential therapeutic target for tolerance-breaking anti-cancer immunotherapy.


Assuntos
Fatores de Transcrição Forkhead , Linfócitos T Reguladores , Fatores de Transcrição Forkhead/genética , Humanos , Inflamação/genética , Fator de Crescimento Transformador beta , Ubiquitina Tiolesterase , Peptidase 7 Específica de Ubiquitina
20.
Eur J Nutr ; 61(3): 1245-1254, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34741649

RESUMO

PURPOSE: Human data are limited linking magnesium (Mg) intake to the risk of non-alcoholic fatty liver disease (NAFLD). We aimed to examine the association between Mg intake and the risk of NAFLD among young adults in the US with a 25-year follow-up. METHODS: This study included 2685 participants from the Coronary Artery Risk Development in Young Adult (CARDIA) study. Diet and dietary supplements were assessed at baseline (1985-1986) and exam years 7 and 20 using an interview-based dietary history. NAFLD, defined as liver attenuation ≤ 51 Hounsfield Units excluding secondary causes of liver fat accumulation, was identified by non-contrast-computed tomography scanning at exam year 25. Multivariable-adjusted logistic regression model was used to examine the associations between cumulative average total intake of Mg (dietary plus supplemental) and NAFLD odds. RESULTS: A total of 629 NAFLD cases were documented. After adjustment for potential confounders, an inverse association between total Mg intake and NAFLD odds was observed. Compared to participants in the lowest quintile of total Mg intake, the odds of NAFLD was 55% lower among individuals in the highest quintile [multivariable-adjusted odds ratio (OR) = 0.45, 95% confidence interval (CI) (0.23, 0.85), p for trend = 0.03]. Consistently, whole-grain consumption, a major dietary source of Mg, was inversely associated with NAFLD odds (p for trend = 0.02). CONCLUSIONS: This study suggests that higher cumulative intake of Mg throughout adulthood is associated with lower odds of NAFLD in midlife. Future studies are needed to establish a possible causal relationship.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Adulto , Dieta , Humanos , Magnésio , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Razão de Chances , Fatores de Risco , Estados Unidos/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa