Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 392
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2400272121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437534

RESUMO

The endothelial lining of cerebral microvessels is damaged relatively early after cerebral ischemia/reperfusion (I/R) injury and mediates blood-brain barrier (BBB) disruption, neurovascular injury, and long-term neurological deficits. I/R induces BBB leakage within 1 h due to subtle structural alterations in endothelial cells (ECs), including reorganization of the actin cytoskeleton and subcellular redistribution of junctional proteins. Herein, we show that the protein peroxiredoxin-4 (Prx4) is an endogenous protectant against endothelial dysfunction and BBB damage in a murine I/R model. We observed a transient upregulation of Prx4 in brain ECs 6 h after I/R in wild-type (WT) mice, whereas tamoxifen-induced, selective knockout of Prx4 from endothelial cells (eKO) mice dramatically raised vulnerability to I/R. Specifically, eKO mice displayed more BBB damage than WT mice within 1 to 24 h after I/R and worse long-term neurological deficits and focal brain atrophy by 35 d. Conversely, endothelium-targeted transgenic (eTG) mice overexpressing Prx4 were resistant to I/R-induced early BBB damage and had better long-term functional outcomes. As demonstrated in cultures of human brain endothelial cells and in animal models of I/R, Prx4 suppresses actin polymerization and stress fiber formation in brain ECs, at least in part by inhibiting phosphorylation/activation of myosin light chain. The latter cascade prevents redistribution of junctional proteins and BBB leakage under conditions of Prx4 repletion. Prx4 also tempers microvascular inflammation and infiltration of destructive neutrophils and proinflammatory macrophages into the brain parenchyma after I/R. Thus, the evidence supports an indispensable role for endothelial Prx4 in safeguarding the BBB and promoting functional recovery after I/R brain injury.


Assuntos
Barreira Hematoencefálica , AVC Isquêmico , Animais , Humanos , Camundongos , Atrofia , Células Endoteliais , Endotélio , Peroxirredoxinas
2.
Proc Natl Acad Sci U S A ; 120(25): e2300012120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307473

RESUMO

Aging compromises the repair and regrowth of brain vasculature and white matter during stroke recovery, but the underlying mechanisms remain elusive. To understand how aging jeopardizes brain tissue repair after stroke, we performed single-cell transcriptomic profiling of young adult and aged mouse brains at acute (3 d) and chronic (14 d) stages after ischemic injury, focusing a priori on the expression of angiogenesis- and oligodendrogenesis-related genes. We identified unique subsets of endothelial cells (ECs) and oligodendrocyte (OL) progenitors in proangiogenesis and pro-oligodendrogenesis phenotypic states 3 d after stroke in young mice. However, this early prorepair transcriptomic reprogramming was negligible in aged stroke mice, consistent with the impairment of angiogenesis and oligodendrogenesis observed during the chronic injury stages after ischemia. In the stroke brain, microglia and macrophages (MG/MΦ) may drive angiogenesis and oligodendrogenesis through a paracrine mechanism. However, this reparative cell-cell cross talk between MG/MΦ and ECs or OLs is impeded in aged brains. In support of these findings, permanent depletion of MG/MΦ via antagonism of the colony-stimulating factor 1 receptor resulted in remarkably poor neurological recovery and loss of poststroke angiogenesis and oligodendrogenesis. Finally, transplantation of MG/MΦ from young, but not aged, mouse brains into the cerebral cortices of aged stroke mice partially restored angiogenesis and oligodendrogenesis and rejuvenated sensorimotor function and spatial learning and memory. Together, these data reveal fundamental mechanisms underlying the age-related decay in brain repair and highlight MG/MΦ as effective targets for promoting stroke recovery.


Assuntos
Células Endoteliais , Acidente Vascular Cerebral , Animais , Camundongos , Encéfalo , Macrófagos , Análise de Sequência de RNA
3.
Nat Methods ; 19(3): 359-369, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35277709

RESUMO

Long-term visualization of the dynamic interactions between intracellular structures throughout the three-dimensional space of whole live cells is essential to better understand their functions, but this task remains challenging due to the limitations of existing three-dimensional fluorescence microscopy techniques, such as an insufficient axial resolution, low volumetric imaging rate and photobleaching. Here, we present the combination of a progressive deep-learning super-resolution strategy with a double-ring-modulated selective plane illumination microscopy design capable of visualizing the dynamics of intracellular structures in live cells for hours at an isotropic spatial resolution of roughly 100 nm in three dimensions at speeds up to roughly 17 Hz. Using this approach, we reveal the complex spatial relationships and interactions between endoplasmic reticulum (ER) and mitochondria throughout live cells, providing new insights into ER-mediated mitochondrial division. We also examined the motion of Drp1 oligomers involved in mitochondrial fission and revealed the dynamic interactions between Drp1 and mitochondria in three dimensions.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Retículo Endoplasmático/metabolismo , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Fotodegradação
4.
Nucleic Acids Res ; 51(15): 7851-7867, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37439380

RESUMO

Genes organized within operons in prokaryotes benefit from coordinated expression. However, within many operons, genes are expressed at different levels, and the mechanisms for this remain obscure. By integrating PacBio-seq, dRNA-seq, Term-seq and Illumina-seq data of a representative archaeon Methanococcus maripaludis, internal transcription termination sites (ioTTSs) were identified within 38% of operons. Higher transcript and protein abundances were found for genes upstream than downstream of ioTTSs. For representative operons, these differences were confirmed by northern blotting, qRT-PCR and western blotting, demonstrating that these ioTTS terminations were functional. Of special interest, mutation of ioTTSs in ribosomal protein (RP)-RNA polymerase (RNAP) operons not only elevated expression of the downstream RNAP genes but also decreased production of the assembled RNAP complex, slowed whole cell transcription and translation, and inhibited growth. Overexpression of the RNAP subunits with a shuttle vector generated the similar physiological effects. Therefore, ioTTS termination is a general and physiologically significant regulatory mechanism of the operon gene expression. Because the RP-RNAP operons are found to be widely distributed in archaeal species, this regulatory mechanism could be commonly employed in archaea.


Assuntos
Archaea , Proteínas Ribossômicas , Terminação da Transcrição Genética , Archaea/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Óperon/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Transcrição Gênica
5.
J Am Chem Soc ; 146(12): 8216-8227, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38486429

RESUMO

Bioorthogonal reactions provide a powerful tool to manipulate biological processes in their native environment. However, the transition-metal catalysts (TMCs) for bioorthogonal catalysis are limited to low atomic utilization and moderate catalytic efficiency, resulting in unsatisfactory performance in a complex physiological environment. Herein, sulfur-doped Fe single-atom catalysts with atomically dispersed and uniform active sites are fabricated to serve as potent bioorthogonal catalysts (denoted as Fe-SA), which provide a powerful tool for in situ manipulation of cellular biological processes. As a proof of concept, the N6-methyladensoine (m6A) methylation in macrophages is selectively regulated by the mannose-modified Fe-SA nanocatalysts (denoted as Fe-SA@Man NCs) for potent cancer immunotherapy. Particularly, the agonist prodrug of m6A writer METTL3/14 complex protein (pro-MPCH) can be activated in situ by tumor-associated macrophage (TAM)-targeting Fe-SA@Man, which can upregulate METTL3/14 complex protein expression and then reprogram TAMs for tumor killing by hypermethylation of m6A modification. Additionally, we find the NCs exhibit an oxidase (OXD)-like activity that further boosts the upregulation of m6A methylation and the polarization of macrophages via producing reactive oxygen species (ROS). Ultimately, the reprogrammed M1 macrophages can elicit immune responses and inhibit tumor proliferation. Our study not only sheds light on the design of single-atom catalysts for potent bioorthogonal catalysis but also provides new insights into the spatiotemporal modulation of m6A RNA methylation for the treatment of various diseases.


Assuntos
Adenosina/análogos & derivados , Imunoterapia , Neoplasias , Humanos , Metilação de RNA , Catálise , Metiltransferases
6.
J Virol ; 97(5): e0032423, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37042750

RESUMO

In ovo vaccination is an attractive immunization approach for chickens. However, most live Newcastle disease virus (NDV) vaccine strains used safely after hatching are unsafe as in ovo vaccines due to their high pathogenicity for chicken embryos. The mechanism for viral pathogenicity in chicken embryos is poorly understood. Our previous studies reported that NDV strain TS09-C was a safe in ovo vaccine, and the F protein cleavage site (FCS) containing three basic amino acids (3B-FCS) was the crucial determinant of the attenuation of TS09-C in chicken embryos. Here, five trypsin-like proteases that activated NDV in chicken embryos were identified. The F protein with 3B-FCS was sensitive to the proteases Tmprss4, Tmprss9, and F7, was present in fewer tissue cells of chicken embryos, which limited the viral tropism, and was responsible for the attenuation of NDV with 3B-FCS, while the F protein with FCS containing two basic amino acids could be cleaved not only by Tmprss4, Tmprss9, and F7 but also by Prss23 and Cfd, was present in most tissue cells, and thereby was responsible for broad tissue tropism and high pathogenicity of virus in chicken embryos. Furthermore, when mixed with the protease inhibitors aprotinin and camostat, NDV with 2B-FCS exhibited greatly weakened pathogenicity in chicken embryos. Thus, our results extend the understanding of the molecular mechanism of NDV pathogenicity in chicken embryos and provide a novel molecular target for the rational design of in ovo vaccines, ensuring uniform and effective vaccine delivery and earlier induction of immune protection by the time of hatching. IMPORTANCE As an attractive immunization approach for chickens, in ovo vaccination can induce a considerable degree of protection by the time of hatching, provide support in closing the window in which birds are susceptible to infection, facilitate fast and uniform vaccine delivery, and reduce labor costs by the use of mechanized injectors. The commercial live Newcastle disease virus (NDV) vaccine strains are not safe for in ovo vaccination and cause the death of chicken embryos. The mechanism for viral pathogenicity in chicken embryos is poorly understood. In the present study, we identified five trypsin-like proteases that activate NDV in chicken embryos and elucidated their roles in the tissue tropism and pathogenicity of NDV used as in ovo vaccine. Finally, we revealed the molecular basis for the pathogenicity of NDV in chicken embryos and provided a novel strategy for the rational design of in ovo ND vaccines.


Assuntos
Doença de Newcastle , Peptídeo Hidrolases , Doenças das Aves Domésticas , Vacinas Virais , Animais , Embrião de Galinha , Anticorpos Antivirais , Galinhas , Doença de Newcastle/imunologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/fisiologia , Peptídeo Hidrolases/metabolismo , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Vacinas Atenuadas , Vacinas Virais/administração & dosagem , Virulência
7.
PLoS Pathog ; 18(6): e1010564, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35679257

RESUMO

The development of thermostable vaccines can relieve the bottleneck of existing vaccines caused by thermal instability and subsequent poor efficacy, which is one of the predominant reasons for the millions of deaths caused by vaccine-preventable diseases. Research into the mechanism of viral thermostability may provide strategies for developing thermostable vaccines. Using Newcastle disease virus (NDV) as model, we identified the negative surface charge of attachment glycoprotein as a novel determinant of viral thermostability. It prevented the temperature-induced aggregation of glycoprotein and subsequent detachment from virion surface. Then structural stability of virion surface was improved and virus could bind to and infect cells efficiently after heat-treatment. Employing the approach of surface charge engineering, thermal stability of NDV and influenza A virus (IAV) vaccines was successfully improved. The increase in the level of vaccine thermal stability was determined by the value-added in the negative surface charge of the attachment glycoprotein. The engineered live and inactivated vaccines could be used efficiently after storage at 37°C for at least 10 and 60 days, respectively. Thus, our results revealed a novel surface-charge-mediated link between HN protein and NDV thermostability, which could be used to design thermal stable NDV and IAV vaccines rationally.


Assuntos
Doença de Newcastle , Vacinas Virais , Animais , Galinhas/metabolismo , Glicoproteínas , Proteína HN/metabolismo , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/metabolismo
8.
BMC Cancer ; 24(1): 868, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030507

RESUMO

OBJECTIVE: Cancer is a predominant cause of death globally. PHD-finger domain protein 5 A (PHF5A) has been reported to participate in various cancers; however, there has been no pan-cancer analysis of PHF5A. This study aims to present a novel prognostic biomarker and therapeutic target for cancer treatment. METHODS: This study explored PHF5A expression and its impact on prognosis, tumor mutation burden (TMB), microsatellite instability (MSI), functional status and tumor immunity across cancers using various public databases, and validated PHF5A expression and its correlation with survival, immune evasion, angiogenesis, and treatment response in hepatocellular carcinoma (HCC) using bioinformatics tools, qRT-PCR and immunohistochemistry (IHC). RESULTS: PHF5A was differentially expressed between tumor and corresponding normal tissues and was correlated with prognosis in diverse cancers. Its expression was also associated with TMB, MSI, functional status, tumor microenvironment, immune infiltration, immune checkpoint genes and tumor immune dysfunction and exclusion (TIDE) score in diverse malignancies. In HCC, PHF5A was confirmed to be upregulated by qRT-PCR and IHC, and elevated PHF5A expression may promote immune evasion and angiogenesis in HCC. Additionally, multiple canonical pathways were revealed to be involved in the biological activity of PHF5A in HCC. Moreover, immunotherapy and transcatheter arterial chemoembolization (TACE) worked better in the low PHF5A expression group, while sorafenib, chemotherapy and AKT inhibitor were more effective in the high expression group. CONCLUSIONS: This study provides a comprehensive understanding of the biological function of PHF5A in the carcinogenesis and progression of various cancers. PHF5A could serve as a tumor biomarker related to prognosis across cancers, especially HCC, and shed new light on the development of novel therapeutic targets.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Instabilidade de Microssatélites , Microambiente Tumoral , Regulação Neoplásica da Expressão Gênica , Terapia de Alvo Molecular , Transativadores , Proteínas de Ligação a RNA
9.
Nanotechnology ; 35(15)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38176072

RESUMO

Semiconductor photocatalysis holds significant promise in addressing both environmental and energy challenges. However, a major hurdle in photocatalytic processes remains the efficient separation of photoinduced charge carriers. In this study, TiO2nanorod arrays were employed by glancing angle deposition technique, onto which Ti3C2TxMXene was deposited through a spin-coating process. This hybrid approach aims to amplify the photocatalytic efficacy of TiO2nanorod arrays. Through photocurrent efficiency characterization testing, an optimal loading of TiO2/Ti3C2Txcomposites is identified. Remarkably, this composite exhibits a 40% increase in photocurrent density in comparison to pristine TiO2. This enhancement is attributed to the exceptional electrical conductivity and expansive specific surface area inherent to Ti3C2TxMXene. These attributes facilitate swift transport of photoinduced electrons, consequently refining the separation and migration of electron-hole pairs. The synergistic TiO2/Ti3C2Txcomposite showcases its potential across various domains including photoelectrochemical water splitting and diverse photocatalytic devices. As such, this composite material stands as a novel and promising entity for advancing photocatalytic applications. This study can offer an innovative approach for designing simple and efficient photocatalytic materials composed of MXene co-catalysts and TiO2for efficient water electrolysis on semiconductors.

10.
Plant Dis ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764344

RESUMO

Wurfbainia villosa var. villosa is a traditional Chinese herbal medicine under the family Zingiberaceae, and its ripe fruits (called Fructus Amomi) are widely used clinically for the treatment of gastrointestinal disorders (Yang et al. 2023; Chen et al. 2023). In September 2023, plants of W. villosa var. villosa exhibited anthracnose-like symptoms on leaf with a disease incidence of 35% (n = 100 investigated plants) in an approximately 90 m2 field in Guangning, China (N23°42'51.70″, E112°26'35.75″). Light yellowish-green spots (~2 mm diameter) initially appeared on the infected leaves, gradually formed sub-circular or irregular spots, then fused and expanded, resulting in wilting of the leaves. To identify the causal agent, 10 symptomatic leaves were collected and transferred to the laboratory. The symptomatic leaf samples were surface sterilized in 0.5% NaClO for 2 min, and in 70% ethanol for 30 s, then washed three times with sterile water and air-dried on sterile filter paper. The leaf tissues were placed on potato dextrose agar (PDA) medium containing 100 µg mL-1 of ampicillin (Sigma-Aldrich, St. Louis, MO) and incubated for 7 days at 28°C in darkness. Nine isolates with similar colony morphology were isolated from the 10 plated leaves. Three representative isolates (GNAF03, GNAF06, GNAF09 with approximately 3.5 cm in diameter after 3 days of incubation) appeared gray to dark brown with dense aerial hyphae at the front and gray to black colonies on the reverse of the plates. Conidia were cylindrical and measured 21.2 to 29.3 µm long × 7.1 to 9.6 µm wide (n = 50). Appressoria were formed by the tips of germ tubes or hyphae and were brown, ellipsoid, thick-walled, and smooth-margined, measuring 10.2 to 12.3 µm long × 6.4 to 8.2 µm wide (n = 50). Morphologically, the fungal isolates resembled Colletotrichum sp. (Weir et al. 2012). For molecular analysis, genomic DNA was extracted from fresh mycelia of the three isolates, and the primers ACT-512F/ACT-783R, CL1/CL2A, GDF/GDR, and ITS1/ITS4 were used to amplify partial regions of rDNA-ITS, actin (ACT), calmodulin (CAL), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) regions, respectively (Weir et al. 2012). The resulting sequences with more than 99% nucleotide identity to C. gloeosporioides were submitted to GenBank (accession numbers PP552725, PP552726, and OR827444 for ACT; PP552727, PP552728, and OR827443 for CAL; PP552729, PP552730, and OR827445 for GAPDH; PP549996, PP549999, and OR841394 for ITS). A phylogenetic tree was generated by the maximum likelihood method using the concatenated sequences of ACT, CAL, GADPH, and ITS by Polysuite software (Damm et al. 2020). Based on morphological and molecular analysis, the three isolates were characterized as C. gloeosporioides. The pathogenicity of the GNAF09 isolate was assessed on W. villosa var. villosa seedling leaves inoculated by spraying with 40 µL of conidial suspension at 106 conidia mL-1 or wounded with a sterile toothpick then inoculated with mycelial agar plugs (5 mm diameter). Control leaves were inoculated with 40 µL of sterile distilled water or agar plugs without mycelia. The inoculated plants were placed in a humid chamber at 28°C with 80% humidity and a 12 h light-dark photoperiod. Symptoms similar to those seen on naturally infected leaves were observed on all inoculated leaves after 7 days inoculation. Re-isolation was performed from 80% of the inoculated leaves and isolates were confirmed as C. gloeosporioides morphologically, confirming Koch's postulates, and by sequencing the ACT, CAL, GADPH, and ITS regions. The control groups remained asymptomatic. In previous studies, C. gloeosporioides has also caused anthracnose on Chinese medicinal plants, including Baishao (Radix paeoniae alba) (Zhang et al. 2017) and Rubia cordifolia L. (Tang et al. 2020). To our knowledge, this is the first report of C. gloeosporioides causing anthracnose on W. villosa var. villosa in China. The results of our report serve as valuable references for further research on this disease.

11.
Nano Lett ; 23(14): 6424-6432, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37395701

RESUMO

Artificial metalloenzymes (ArMs) are gaining much attention in life sciences. However, the function of the present ArMs for disease treatment is still in its infancy, which may impede the possible therapeutic potential. Herein, we construct an antibody engineered ArM by using the Fc region of IgG and bioorthogonal chemistry, which endows the ArM with the capability of manipulating cell-cell communication and bioorthogonal catalysis for tumor immuno- and chemotherapy. Specially, Fc-Pd ArM is modified on the cancer cell surface by metabolic glycoengineering to catalyze the bioorthogonal activation of prodrug for tumor chemotherapy. More importantly, the antibody-based ArM can mediate cell-cell communication between cancer cells and NK cells, activating the ADCC effect for immunotherapy. In vivo antitumor applications suggest that the ArM can not only eliminate primary tumor but also inhibit tumor lung metastasis. Our work provides a new attempt to develop artificial metalloenzymes with cell-cell communication the ability for bioorthogonal catalysis and combination therapy.


Assuntos
Metaloproteínas , Neoplasias , Humanos , Células Matadoras Naturais , Neoplasias/patologia , Anticorpos , Espaço Extracelular , Metaloproteínas/metabolismo , Linhagem Celular Tumoral
12.
Molecules ; 29(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38202823

RESUMO

Quercetin is a flavonoid with significant biological and pharmacological activity. In this paper, quercetin was modified at the 3-OH position. Rutin was used as a raw material. We used methyl protection, Williamson etherification reactions, and then substitution reactions to prepare 15 novel quercetin derivatives containing a quinoline moiety. All these complexes were characterized by 1H NMR, 13C NMR, IR and HRMS. Of these, compound 3e (IC50 = 6.722 µmol·L-1) had a better inhibitory effect on human liver cancer (HepG-2) than DDP (Cisplatin) (IC50 = 26.981 µmol·L-1). The mechanism of the action experiment showed that compound 3e could induce cell apoptosis.


Assuntos
Quercetina , Quinolinas , Humanos , Quercetina/farmacologia , Flavonoides , Quinolinas/farmacologia , Rutina , Analgésicos Opioides
13.
Stroke ; 54(4): 1088-1098, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36912142

RESUMO

BACKGROUND: Stroke is the primary cause of chronic disability in the elderly, as there are no neurorestorative treatments for those who do not qualify for recanalization therapy. Experimental evidence in stroke animals suggests that transplantation of bone marrow-derived human mesenchymal stem cells (hMSCs) holds promise, but hMSC transplantation has not been systematically tested in aged animals. We tested the hypothesis that poststroke hMSC transplantation improves stroke recovery in aged mice by promoting brain repair. METHODS: Permanent focal cerebral ischemia was induced in 20-month-old C57BL/6 male mice by distal middle cerebral artery occlusion. Bone marrow-derived hMSCs were expanded in vitro and then administrated intravenously into mice (1×106 cells in PBS) 24 hours after distal middle cerebral artery occlusion. Sensorimotor and cognitive functions, brain atrophy, and brain repair processes (neurogenesis, angiogenesis, oligodendrogenesis) were assessed for up to 56 days after stroke. RESULTS: Poststroke hMSC transplantation did not mitigate brain atrophy or improve neuronal survival at 56 days after distal middle cerebral artery occlusion. However, hMSC-treated mice displayed superior neurobehavioral performances in the open field, rotarod, adhesive removal, novel object, and Morris water maze tests compared with PBS-treated controls. hMSCs promoted white matter integrity and enhanced angiogenesis and oligodendrogenesis-but not neurogenesis-in the stroke brain. Positive correlations between neurobehavioral performance and brain repair profiles or white matter integrity were observed in stroke mice. CONCLUSIONS: Poststroke hMSC transplantation improves long-term stroke recovery in aged mice, likely via mechanisms involving enhanced microvascular regeneration and white matter restoration.


Assuntos
Isquemia Encefálica , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Camundongos , Humanos , Masculino , Animais , Idoso , Lactente , Infarto da Artéria Cerebral Média/cirurgia , Camundongos Endogâmicos C57BL , Encéfalo , Acidente Vascular Cerebral/terapia , Isquemia Encefálica/cirurgia , Modelos Animais de Doenças
14.
J Am Chem Soc ; 145(3): 1955-1963, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36625653

RESUMO

As one of the most typical bioorthogonal reactions, the Cu(I)-catalyzed azide-alkyne 1,3-cycloaddition (CuAAC) reaction has received worldwide attention in intracellular transformation of prodrugs due to its high efficiency and selectivity. However, the exogenous Cu catalysts may disturb Cu homeostasis and cause side effects to normal tissues. What is more, the intratumoral Cu(I) is insufficient to efficiently catalyze the intracellular CuAAC reaction due to oncogene-induced labile Cu(I) deficiency. Herein, in order to boost the endogenous Cu(I) level for intracellular drug synthesis through the bioorthogonal reaction, a self-adaptive bioorthogonal catalysis system was constructed by encapsulating prodrugs and sodium ascorbate within adenosine triphosphate aptamer-functionalized metal-organic framework nanoparticles. The system presents specificity to tumor cells and does not require exogenous Cu catalysts, thereby leading to high anti-tumor efficacy and minimal side effects both in vitro and in vivo. This work will open up a new opportunity for developing biosafe and high-performance bioorthogonal catalysis systems.


Assuntos
Estruturas Metalorgânicas , Pró-Fármacos , Cobre , Ácido Ascórbico , Catálise , Alcinos , Azidas , Reação de Cicloadição
15.
J Am Chem Soc ; 145(30): 16658-16668, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37486170

RESUMO

Pyroptosis is an inflammatory form of programmed cell death that holds great promise in cancer therapy. However, autophagy as the crucial pyroptosis checkpoint and the self-protective mechanism of cancer cells significantly weakens the therapeutic efficiency. Here, a bioorthogonal pyroptosis nanoregulator is constructed to induce pyroptosis and disrupt the checkpoint, enabling high-efficiency pyroptosis cancer therapy. The nanoregulator allows the in situ synthesis and accumulation of the photosensitizer PpIX in the mitochondria of cancer cells to directly produce mitochondrial ROS, thus triggering pyroptosis. Meanwhile, the in situ generated autophagy inhibitor via palladium-catalyzed bioorthogonal chemistry can disrupt the pyroptosis checkpoint to boost the pyroptosis efficacy. With the biomimetic cancer cell membrane coating, this platform for modulating pyroptosis presents specificity to cancer cells and poses no harm to normal tissue, resulting in a highly efficient and safe antitumor treatment. To our knowledge, this is the first report on a disrupting intrinsic protective mechanism of cancer cells for tumor pyroptosis therapy. This work highlights that autophagy as a checkpoint plays a key regulative role in pyroptosis therapy, which would motivate the future design of therapeutic regimens.


Assuntos
Neoplasias , Piroptose , Apoptose , Autofagia , Biomimética , Membrana Celular
16.
Neurobiol Dis ; 180: 106078, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36914076

RESUMO

Traumatic brain injury (TBI) is commonly followed by intractable psychiatric disorders and long-term changes in affect, such as anxiety. The present study sought to investigate the effect of repetitive intranasal delivery of interleukin-4 (IL-4) nanoparticles on affective symptoms after TBI in mice. Adult male C57BL/6 J mice (10-12 weeks of age) were subjected to controlled cortical impact (CCI) and assessed by a battery of neurobehavioral tests up to 35 days after CCI. Neuron numbers were counted in multiple limbic structures, and the integrity of limbic white matter tracts was evaluated using ex vivo diffusion tensor imaging (DTI). As STAT6 is a critical mediator of IL-4-specific transcriptional activation, STAT6 knockout mice were used to explore the role of endogenous IL-4/STAT6 signaling axis in TBI-induced affective disorders. We also employed microglia/macrophage (Mi/Mϕ)-specific PPARγ conditional knockout (mKO) mice to test if Mi/Mϕ PPARγ critically contributes to IL-4-afforded beneficial effects. We observed anxiety-like behaviors up to 35 days after CCI, and these measures were exacerbated in STAT6 KO mice but mitigated by repetitive IL-4 delivery. We discovered that IL-4 protected against neuronal loss in limbic structures, such as the hippocampus and the amygdala, and improved the structural integrity of fiber tracts connecting the hippocampus and amygdala. We also observed that IL-4 boosted a beneficial Mi/Mϕ phenotype (CD206+/Arginase 1+/PPARγ+ triple-positive) in the subacute injury phase, and that the numbers of Mi/Mϕ appositions with neurons were robustly correlated with long-term behavioral performances. Remarkably, PPARγ-mKO completely abolished IL-4-afforded protection. Thus, CCI induces long-term anxiety-like behaviors in mice, but these changes in affect can be attenuated by transnasal IL-4 delivery. IL-4 prevents the long-term loss of neuronal somata and fiber tracts in key limbic structures, perhaps due to a shift in Mi/Mϕ phenotype. Exogenous IL-4 therefore holds promise for future clinical management of mood disturbances following TBI.


Assuntos
Lesões Encefálicas Traumáticas , Microglia , Camundongos , Masculino , Animais , PPAR gama , Interleucina-4 , Imagem de Tensor de Difusão , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ansiedade/etiologia , Neurônios
17.
BMC Plant Biol ; 23(1): 381, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550611

RESUMO

BACKGROUND: The R2R3-MYB transcription factors are a crucial and extensive gene family in plants, which participate in diverse processes, including development, metabolism, defense, differentiation, and stress response. In the Lingnan region of China, Morinda officinalis is extensively grown and is renowned for its use as both a medicinal herb and food source. However, there are relatively few reports on the R2R3-MYB transcription factor family in M.officinalis. RESULTS: In this study, we identified 97 R2R3-MYB genes in the genome of Morinda officinalis and classified them into 32 subgroups based on phylogenetic comparison with Arabidopsis thaliana. The lack of recent whole-genome duplication events in M.officinalis may be the reason for the relatively few members of the R2R3-MYB family. We also further analyzed the physical and chemical characteristics, conserved motifs, gene structure, and chromosomal location. Gene duplication events found 21 fragment duplication pairs and five tandem duplication event R2R3-MYB genes in M.officinalis may also affect gene family expansion. Based on phylogenetic analysis, cis-element analysis, co-expression analysis and RT-qPCR, we concluded that MoMYB33 might modulate flavonol levels by regulating the expression of 4-coumarate-CoA ligase Mo4CL2, chalcone isomerase MoCHI3, and flavonol synthase MoFLS4/11/12. MoMYB33 and AtMYB111 showed the highest similarity of 79% and may be involved in flavonol synthase networks by the STRING database. Moreover, we also identified MoMYB genes that respond to methyl Jasmonate (MeJA) and abscisic acid (ABA) stress by RT-qPCR. CONCLUSIONS: This study offers a thorough comprehension of R2R3-MYB in M.officinalis, which lays the foundation for the regulation of flavonol synthesis and the response of MoMYB genes to phytohormones in M.officinalis.


Assuntos
Arabidopsis , Morinda , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Morinda/genética , Morinda/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Genômica , Flavonóis/metabolismo , Regulação da Expressão Gênica de Plantas
18.
Plant Cell Environ ; 46(11): 3405-3419, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37564020

RESUMO

Brassica crops include various edible vegetable and plant oil crops, and their production is limited by low temperature beyond their tolerant capability. The key regulators of low-temperature resistance in Brassica remain largely unexplored. To identify posttranscriptional regulators of plant response to low temperature, we performed small RNA profiling, and found that 16 known miRNAs responded to cold treatment in Brassica rapa. The cold response of seven of those miRNAs were further confirmed by qRT-PCR and/or northern blot analyses. In parallel, a genome-wide association study of 220 accessions of Brassica napus identified four candidate MIRNA genes, all of which were cold-responsive, at the loci associated with low-temperature resistance. Specifically, these large-scale data analyses revealed a link between miR1885 and the plant response to low temperature in both B. rapa and B. napus. Using 5' rapid amplification of cDNA ends approach, we validated that miR1885 can cleave its putative target gene transcripts, Bn.TIR.A09 and Bn.TNL.A03, in B. napus. Furthermore, overexpression of miR1885 in Semiwinter type B. napus decreased the mRNA abundance of Bn.TIR.A09 and Bn.TNL.A03 and resulted in increased sensitivity to low temperature. Knocking down of miR1885 in Spring type B. napus led to increased mRNA abundance of its targets and improved rapeseed tolerance to low temperature. Together, our results suggested that the loci of miR1885 and its targets could be potential candidates for the molecular breeding of low temperature-tolerant Spring type Brassica crops.


Assuntos
Brassica napus , Brassica rapa , Brassica , MicroRNAs , Brassica napus/genética , Brassica rapa/genética , Brassica/genética , Estudo de Associação Genômica Ampla , Multiômica , Temperatura , MicroRNAs/genética , RNA Mensageiro , Regulação da Expressão Gênica de Plantas
19.
Neurochem Res ; 48(11): 3327-3348, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37505366

RESUMO

Stroke is an acute cerebrovascular disease resulting from either obstruction or rupture of a blood vessel in the brain. Oxidative stress (OS), referred to a status where cellular oxidative capacities overwhelm antioxidative defenses, is involved in the pathophysiology of stroke. The bibliometric analysis and in-depth review aim to depict the research trend of OS in stroke. Relevant scientific publications were acquired from the Web of Science Core Collection database. Scientific landscape of OS in stroke was illustrated by general quantitative trend, impactful journals, and co-authorship of various academic units (i.e., countries/regions, organizations, and authors). Furthermore, theme analysis predicting the hot research issues and frontiers was performed. 15,826 documents regarding OS in stroke were obtained over a time span of more than 20 years from 1992 to 2021. The overall tendency of publication counts was continuously on the rise. Bibliometric analysis indicated China and the United States were predominant in this study field, as reflected by their high publication counts and intensive collaboration with other countries. Current key research areas of OS in stroke may lie in the investigation of neuroinflammation, and interaction among multiple cell death mechanisms including apoptosis, autophagy, and ferroptosis to search for effective treatments. Moreover, another hot topic could be the association between air pollution and stroke, and its underlying mechanisms. As the exploration of OS in stroke is speculated to be a continuous hot spot in the future, this article may be helpful for researchers to conduct future studies with the understanding of influential academic forces and research highlights.


Assuntos
Acidente Vascular Cerebral , Humanos , Estresse Oxidativo , Encéfalo , Bibliometria , Antioxidantes
20.
Org Biomol Chem ; 21(47): 9346-9355, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37909067

RESUMO

Alstoscholarinoid A is a novel rearranged triterpene with an unprecedented 6/6/5/6/6/6 framework and an additional unique C28 → C11-olide F-ring, and displays antihyperuricemic bioactivity. Herein, we report a bio-inspired synthesis of alstoscholarinoid B in a stepwise manner, which is amenable to gram-scale synthesis. The synthesis involved the Chugaev elimination as a key step to realize the migration of the Δ11,12-double bond of oleanolic acid, and also featured a sequential LiHMDS-mediated intramolecular aldol condensation/lactonization to establish the polycyclic ring system. Additionally, a tandem deprotection/aldol condensation/lactonization process under the influence of LiI/2,4,6-collidine for forging the polycyclic scaffold was also serendipitously discovered. Mechanistic studies indicated that lithium carboxylate might function as an inner base for the chemoselective α-deprotonation of the C12-aldehyde.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa