Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(8): e1012437, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39102432

RESUMO

The ability of Staphylococcus aureus (S. aureus) to survive within macrophages is a critical strategy for immune evasion, contributing to the pathogenesis and progression of osteomyelitis. However, the underlying mechanisms remain poorly characterized. This study discovered that inhibiting the MEK1/2 pathway reduced bacterial load and mitigated bone destruction in a mouse model of S. aureus osteomyelitis. Histological staining revealed increased phosphorylated MEK1/2 levels in bone marrow macrophages surrounding abscess in the mouse model of S. aureus osteomyelitis. Activation of MEK1/2 pathway and its roles in impairing macrophage bactericidal function were confirmed in primary mouse bone marrow-derived macrophages (BMDMs). Transcriptome analysis and in vitro experiments demonstrated that S. aureus activates the MEK1/2 pathway through EGFR signaling. Moreover, we found that excessive activation of EGFR-MEK1/2 cascade downregulates mitochondrial reactive oxygen species (mtROS) levels by suppressing Chek2 expression, thereby impairing macrophage bactericidal function. Furthermore, pharmacological inhibition of EGFR signaling prevented upregulation of phosphorylated MEK1/2 and restored Chek2 expression in macrophages, significantly enhancing S. aureus clearance and improving bone microstructure in vivo. These findings highlight the critical role of the EGFR-MEK1/2 cascade in host immune defense against S. aureus, suggesting that S. aureus may reduce mtROS levels by overactivating the EGFR-MEK1/2 cascade, thereby suppressing macrophage bactericidal function. Therefore, combining EGFR-MEK1/2 pathway blockade with antibiotics could represent an effective therapeutic approach for the treatment of S. aureus osteomyelitis.


Assuntos
Receptores ErbB , MAP Quinase Quinase 1 , Macrófagos , Osteomielite , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Osteomielite/microbiologia , Osteomielite/imunologia , Osteomielite/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Camundongos , Staphylococcus aureus/imunologia , Receptores ErbB/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Transdução de Sinais
2.
Cell Mol Life Sci ; 81(1): 300, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001897

RESUMO

BACKGROUND: Age-associated impairments in innate immunity are believed to be a causative factor responsible for severe pathogenesis of Staphylococcus aureus (S. aureus) infection in the bone tissue. However, the basis for age-associated decline in innate immune response upon S. aureus infection remains poorly understood. RESULTS: Our transcriptional data (GEO: GSE166522) from a mouse model of S. aureus osteomyelitis show up-regulated CXCL9 and CXCL10 (CXCL9/10), which is further confirmed in vitro and in vivo by the present study. Notably, monocytes are a main source for CXCL9/10 production in bone marrow upon S. aureus challenge, but this response declines in middle-aged mice. Interestingly, conditional medium of bone marrow monocytes from middle-aged mice has a strikingly decreased effect on bactericidal functions of neutrophils and macrophages compares with that from young mice. We further show that activation of CXCL9/10-CXCR3 axis between monocytes and macrophages/neutrophils promotes the bactericidal function of the cells, whereas blocking the axis impairs such function. Importantly, treatment with either exogenous CXCL9 or CXCL10 in a middle-aged mice model enhances, while pharmacological inhibition of CXCR3 in young mice model impairs, bacterial clearance and bone marrow structure. CONCLUSIONS: These findings demonstrate that bone marrow monocytes act as a critical promotor of innate immune response via the CXLCL9/10-CXCR3 axis upon S. aureus infection, and that the increased susceptibility to S. aureus infection in skeleton in an aged host may be largely attributable to the declined induction of CXCR9/10 in monocytes.


Assuntos
Quimiocina CXCL10 , Quimiocina CXCL9 , Modelos Animais de Doenças , Imunidade Inata , Monócitos , Osteomielite , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Osteomielite/microbiologia , Osteomielite/imunologia , Osteomielite/metabolismo , Osteomielite/patologia , Monócitos/imunologia , Monócitos/metabolismo , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/genética , Staphylococcus aureus/imunologia , Camundongos , Quimiocina CXCL10/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Infecções Estafilocócicas/metabolismo , Camundongos Endogâmicos C57BL , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Envelhecimento/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo
3.
Mol Ther ; 31(1): 174-192, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36104974

RESUMO

There is no effective therapy for implant-associated Staphylococcus aureus osteomyelitis, a devastating complication after orthopedic surgery. An immune-suppressive profile with up-regulated programmed cell death 1/programmed death ligand 1 (PD-1/PD-L1) was identified based on our transcriptional data (GEO: GSE166522) from a mouse model of S. aureus osteomyelitis. PD-1/PD-L1 expression was up-regulated mainly in F4/80+ macrophages surrounding the abscess in S. aureus-infected bone. Mechanistically, PD-1/PD-L1 activated mitophagy to suppress production of mitochondrial reactive oxygen species (ROS), suppressing the bactericidal function of macrophages. Using neutralizing antibodies for PD-L1 or PD-1, or knockout of PD-L1 adjuvant to gentamicin markedly reduced mitophagy in bone marrow F4/80+ cells, enhanced bacterial clearance in bone tissue and implants, and reduced bone destruction in mice. PD-1/PD-L1 expression was also increased in the bone marrow from individuals with S. aureus osteomyelitis. These findings uncover a so far unknown function of PD-1/PD-L1-mediated mitophagy in suppressing the bactericidal function of bone marrow macrophages.


Assuntos
Anticorpos , Antígeno B7-H1 , Osteomielite , Receptor de Morte Celular Programada 1 , Animais , Camundongos , Adjuvantes Imunológicos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Osteomielite/metabolismo , Osteomielite/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Staphylococcus aureus , Modelos Animais de Doenças , Anticorpos/uso terapêutico
4.
FASEB J ; 35(10): e21851, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34547121

RESUMO

It has been known that moderate mechanical loading, like that caused by exercise, promotes bone formation. However, its underlying mechanisms remain elusive. Here we showed that moderate running dramatically improved trabecular bone in mice tibias with an increase in bone volume fraction and trabecular number and a decrease in trabecular pattern factor. Results of immunohistochemical and histochemical staining revealed that moderate running mainly increased the number of osteoblasts but had no effect on osteoclasts. In addition, we observed a dramatic increase in the number of colony forming unit-fibroblast in endosteal bone marrow and the percentage of CD45- Leptin receptor+ (CD45- LepR+ ) endosteal mesenchymal progenitors. Bioinformatics analysis of the transcriptional data from gene expression omnibus (GEO) database identified chemokine c-c-motif ligands (CCL2) as a critical candidate induced by mechanical loading. Interestingly, we found that CCL2 was up-regulated mainly in osteoblastic cells in the tibia of mice after moderate running. Further, we found that mechanical loading up-regulated the expression of CCL2 by activating ERK1/2 pathway, thereby stimulating migration of endosteal progenitors. Finally, neutralizing CCL2 abolished the recruitment of endosteal progenitors and the increased bone formation in mice after 4 weeks running. These results therefore uncover an unknown connection between osteoblasts and endosteal progenitors recruited in the increased bone formation induced by mechanical loading.


Assuntos
Osso Esponjoso/citologia , Quimiocina CCL2/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteogênese , Condicionamento Físico Animal , Animais , Osso Esponjoso/metabolismo , Movimento Celular , Quimiocina CCL2/genética , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo
5.
Infect Immun ; 89(5)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33619031

RESUMO

To investigate the molecular pathogenesis of bone with osteomyelitis, we developed implant-associated osteomyelitis (IAOM) models in mice. An orthopedic stainless pin was surgically placed in the right femoral midshaft of mice, followed by an inoculation of Staphylococcus aureus into the medullary cavity. Typical characteristics of IAOM, like periosteal reaction and intraosseous abscess, occurred by day 14 postinfection. By day 28 postinfection, necrotic abscess, sequestrum formation, and deformity of the whole femur were observed. Transcriptional analysis identified 101 and 1,702 differentially expressed genes (DEGs) between groups by days 3 and 14 postinfection, respectively. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed the enrichment of pathways in response to the bacterium, receptor-ligand activity, and chemokine signaling by day 3 postinfection. However, by day 14 postinfection, the enrichment switched to angiogenesis, positive regulation of cell motility and migration, skeletal system development, and cytokine-cytokine receptor interaction. Furthermore, protein-protein interaction network analysis identified 4 cytokines (interleukin 6 [IL-6], Cxcl10, gamma interferon [IFN-γ], and Cxcl9) associated with IAOM at an early stage of infection. Overall, as the pathological changes in this mouse model were consistent with those in human IAOM, our model may be used to investigate the mechanism and treatment of IAOM. Furthermore, the data for transcriptome sequencing and bioinformatic analysis will be an important resource for dissecting the molecular pathogenesis of bone with IAOM.


Assuntos
Osteomielite/etiologia , Infecções Relacionadas à Prótese/genética , Infecções Relacionadas à Prótese/microbiologia , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Transcriptoma , Animais , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Camundongos
6.
Cell Microbiol ; 22(10): e13240, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32584493

RESUMO

Internalisation of Staphylococcus aureus in osteoblasts plays a critical role in the persistence and recurrence of osteomyelitis, the mechanisms involved in this process remain largely unknown. In the present study, evidence of internalised S. aureus in osteoblasts was found in long bone of haematogenous osteomyelitis in mice after 2 weeks of infection. Meanwhile, eliminating extracellular S. aureus by gentamicin can partially rescue bone loss, whereas the remaining intracellular S. aureus in osteoblasts may be associated with continuous bone destruction. In osteoblastic MC3T3 cells, intracellular S. aureus was detectable as early as 15 min after infection, and the internalisation rates increased with the extension of infection time. Additionally, S. aureus invasion stimulated the expression of phosphor-focal adhesion kinase (FAK), phosphor-epidermal growth factor receptor (EGFR) and phosphor-c-Src in a time-dependent way, and blocking EGFR/FAK or c-Src signalling significantly reduced the internalisation rate of S. aureus in osteoblasts. Our findings provide new insights into the mechanism of S. aureus internalisation in osteoblast and raise the potential of targeting EGFR/FAK and c-Src as adjunctive therapeutics for treating chronic S. aureus osteomyelitis.


Assuntos
Receptores ErbB/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Osteoblastos/microbiologia , Osteomielite/microbiologia , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Animais , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Staphylococcus aureus/metabolismo
7.
Microb Cell Fact ; 20(1): 102, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001083

RESUMO

As treatment of Staphylococcus aureus (S. aureus) osteomyelitis is often hindered by the development of antibiotic tolerance, novel antibacterial therapeutics are required. Here we found that the cell-free supernatant of Bacillus subtilis (B. subtilis CFS) killed planktonic and biofilm S. aureus, and increased S. aureus susceptibility to penicillin and gentamicin as well. Further study showed that B. subtilis CFS suppressed the expression of the genes involved in adhesive molecules (Cna and ClfA), virulence factor Hla, quorum sensing (argA, argB and RNAIII) and biofilm formation (Ica and sarA) in S. aureus. Additionally, our data showed that B. subtilis CFS changed the membrane components and increased membrane permeabilization of S. aureus. Finally, we demonstrated that B. subtilis CFS increased considerably the susceptibility of S. aureus to penicillin and effectively reduced S. aureus burdens in a mouse model of implant-associated osteomyelitis. These findings support that B. subtilis CFS may be a potential resistance-modifying agent for ß-lactam antibiotics against S. aureus.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/crescimento & desenvolvimento , Meios de Cultura/farmacologia , Osteomielite/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Bacillus subtilis/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Meios de Cultura/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Osteomielite/tratamento farmacológico , Percepção de Quorum , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
8.
J Cell Physiol ; 235(11): 8653-8666, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32324278

RESUMO

Osteoarthritis (OA), a disease of the entire joint, is characterized by abnormal bone remodeling and coalescent degradation of articular cartilage. We have previously found that elevated levels of H-type vessels in subchondral bone correlate with OA and that focal adhesion kinase (FAK) is critical for H-type vessel formation in osteoporosis. However, the potential role of FAK in OA remains unexplored. Here, we demonstrate that the p-FAK level was dramatically elevated in subchondral bone following anterior cruciate ligament transection (ACLT) in rats. Specific inhibition of FAK signaling with Y15 in subchondral bone resulted in the suppression of subchondral bone deterioration and this effect was mediated by H-type vessel-induced ectopic bone formation. Further, articular cartilage degeneration was also alleviated after Y15 treatment. In vitro, the p-FAK level was significantly elevated in mesenchymal stem cells (MSCs) from vehicle-treated ACLT rats as compared to that in MSCs from sham controls and Y15-treated ACLT rats. Elevated p-FAK level in MSCs promoted vascular endothelial growth factor (VEGF) expression, as demonstrated from the high VEGF level in the blood, subchondral bone, and conditioned medium (CM) of MSCs from vehicle-treated ACLT rats. The CM of MSCs from vehicle-treated ACLT rats might promote the angiogenesis of endothelial cells and the catabolic response of chondrocytes through the FAK-growth factor receptor-bound protein 2-mitogen-activated protein kinase-mediated expression of VEGF. The effect of the CM from MSCs of Y15-treated ACLT rats or that treated with a VEGF-neutralizing antibody on vessel formation and the catabolic response was lowered. Thus, the specific inhibition of FAK signaling may be a promising avenue for the prevention or early treatment of OA.


Assuntos
Cartilagem Articular/metabolismo , Quinase 1 de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Osteoartrite/tratamento farmacológico , Alendronato/farmacologia , Animais , Ligamento Cruzado Anterior/patologia , Remodelação Óssea/efeitos dos fármacos , Remodelação Óssea/fisiologia , Osso e Ossos/patologia , Condrócitos/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Masculino , Osteoartrite/patologia , Ratos Sprague-Dawley
9.
FASEB J ; 33(10): 11137-11147, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31298955

RESUMO

So far, there has been no effective cure for osteoporotic cortical bone, the most significant change in long bone structure during aging and the main cause of bone fragility fractures, because its underlying molecular and cellular mechanisms remain largely unknown. We used 3- and 15-mo-old mice as well as 15-mo-old mice treated with vehicle and gefitinib to evaluate structural, cellular, and molecular changes in cortical bone. We found that the senescence of osteoprogenitors was increased, whereas the expression of phosphorylated epidermal growth factor receptor (EGFR) on the endosteal surface of cortical bone down-regulated in middle-aged 15-mo-old mice compared with young 3-mo-old mice. Further decreasing EGFR signaling by gefitinib treatment in middle-aged mice resulted in promoted senescence of osteoprogenitors and accelerated cortical bone degeneration. Moreover, inhibiting EGFR signaling suppressed the expression of enhancer of zeste homolog 2 (Ezh2), the repressor of cell senescence-inducer genes, through ERK1/2 pathway, thereby promoting senescence in osteoprogenitors. Down-regulated EGFR signaling plays a physiologically significant role during aging by reducing Ezh2 expression, leading to the senescence of osteoprogenitors and the decline in bone formation on the endosteal surface of cortical bone.-Liu, G., Xie, Y., Su, J., Qin, H., Wu, H., Li, K., Yu, B., Zhang, X. The role of EGFR signaling in age-related osteoporosis in mouse cortical bone.


Assuntos
Osso Cortical/metabolismo , Receptores ErbB/metabolismo , Osteoporose/metabolismo , Transdução de Sinais/fisiologia , Envelhecimento/metabolismo , Animais , Senescência Celular/fisiologia , Regulação para Baixo/fisiologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteogênese/fisiologia
10.
J Cell Physiol ; 234(10): 18017-18028, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30825206

RESUMO

Clinical studies have indicated that increased serum cholesterol levels raised the risk of tendinopathy in hypercholesterolemia, but the effect of cholesterol on tendon-derived stem cells (TDSCs) and its underlying mechanism have not been studied. The purpose of this study is to investigate the association between cholesterol and tendinopathy in vitro and in vivo, and its underlying molecular mechanism as well. In TDSCs, the effect of cholesterol was assessed by quantitative polymerase chain reaction, western blot analysis, and immunofluorescence staining. Intracellular levels of reactive oxygen species (ROS) was detected, using flow cytometry. The link between nuclear factor (NF)-κB signaling and the effect of cholesterol was evaluated using a representative IκB kinase (IKK) inhibitor, BAY 11-7082. In addition, Achilles tendons from apolipoprotein E mice fed with a high-fat diet were histologically assessed using hematoxylin and eosin staining and immunohistochemistry. We found that high cholesterol apparently lowered the expression of tendon cell markers (collagen 1, scleraxis, tenomodulin), and elevated ROS levels via the NF-κB pathway both in vitro and in vivo. The ROS scavenger N-acetylcysteine (NAC) and BAY 11-7082 reversed the inhibiting effect of cholesterol on the tendon-related gene expressions of TDSCs. Moreover, NAC blocked cholesterol-induced phosphorylation of IκBα and p65. Significant histological alternation in vivo was shown in Achilles tendon in the hypercholesterolemic group. These results indicated that high cholesterol may inhibit the tendon-related gene expressions in TDSCs via ROS-activated NF-кB signaling, implying pathogenesis of tendinopathy in hypercholesterolemia and suggesting a new mechanism underlying hypercholesterolemia-induced tendinopathy.


Assuntos
Tendão do Calcâneo/metabolismo , Colesterol/metabolismo , Hipercolesterolemia/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/metabolismo , Tendinopatia/metabolismo , Tendão do Calcâneo/efeitos dos fármacos , Tendão do Calcâneo/patologia , Animais , Antioxidantes/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Hipercolesterolemia/patologia , Masculino , Camundongos Knockout para ApoE , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia , Tendinopatia/genética , Tendinopatia/patologia , Tendinopatia/prevenção & controle
11.
J Cell Physiol ; 234(10): 17946-17958, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30834523

RESUMO

To identify the effects of running on articular cartilage and subchondral bone remodeling, C57BL/6 mice were randomly divided into three groups: control, moderate-, and strenuous running. Magnetic resonance imaging showed bone marrow lesions in the knee subchondral bone in the strenuous-running group in contrast with the other two groups. The microcomputed tomography analysis showed promoted bone formation in the subchondral bone in mice subjected to strenuous running. Histological and immunohistochemistry results indicated that terminal differentiation of chondrocytes and degeneration of articular cartilage were enhanced but, synthesis of platelet-derived growth factor-AA (PDGF-AA) in the subchondral bone was suppressed after strenuous running. In vitro, excessive mechanical treatments suppressed the expression of PDGF-AA in osteoblasts, and the condition medium from mechanical-treated osteoblasts stimulated maturation and terminal differentiation of chondrocytes. These results indicate that strenuous running suppresses the synthesis of PDGF-AA in subchondral bone, leading to downregulated PDGF/Akt signal in articular cartilage and thus cartilage degeneration.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Fêmur/metabolismo , Osteoblastos/metabolismo , Osteogênese , Esforço Físico , Fator de Crescimento Derivado de Plaquetas/metabolismo , Corrida , Tíbia/metabolismo , Animais , Cartilagem Articular/patologia , Diferenciação Celular , Células Cultivadas , Condrócitos/patologia , Regulação para Baixo , Feminino , Fêmur/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Tíbia/diagnóstico por imagem
12.
Clin Sci (Lond) ; 133(12): 1297-1308, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31175224

RESUMO

Bone loss in Staphylococcus aureus (S. aureus) osteomyelitis poses a serious challenge to orthopedic treatment. The present study aimed to elucidate how S. aureus infection in bone might induce bone loss. The C57BL/6 mice were injected with S. aureus (106 CFU/ml, 100 µl) or with the same amount of vehicle (control) via the tail vein. Microcomputed tomography (microCT) analysis showed bone loss progressing from week 1 to week 5 after infection, accompanied by a decreased number of osteocalcin-positive stained osteoblasts and the suppressed mRNA expression of Runx2 and osteocalcin. Transcriptome profiles of GSE30119 were downloaded and analyzed to determine the differences in expression of inflammatory factors between patients with S. aureus infected osteomyelitis and healthy controls, the data showed significantly higher mRNA expression of granulocyte colony-stimulating factor (G-CSF) in the whole blood from patients with S. aureus infection. Enzyme-linked immunosorbent assay (ELISA) analysis confirmed an increased level of G-CSF in the bone marrow and serum from S. aureus infected mice, which might have been due to the increased amount of F4/80+ macrophages. Interestingly, G-CSF neutralizing antibody treatment significantly rescued the bone loss after S. aureus infection, as evidenced by its roles in improving BV/TV and preserving osteocalcin- and osterix-positive stained cells. Importantly, we found that G-CSF level was significantly up-regulated in the serum from osteomyelitis patients infected by S. aureus Together, S. aureus infection might suppress the function of osteoblastic cells and induce progressive bone loss by up-regulating the level G-CSF, suggesting a therapeutic potential for G-CSF neutralization in combating bone loss in S. aureus osteomyelitis.


Assuntos
Remodelação Óssea , Fator Estimulador de Colônias de Granulócitos/metabolismo , Osteoblastos/metabolismo , Osteomielite/metabolismo , Infecções Estafilocócicas/metabolismo , Tíbia/metabolismo , Adulto , Animais , Anticorpos Neutralizantes/farmacologia , Remodelação Óssea/efeitos dos fármacos , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Fator Estimulador de Colônias de Granulócitos/antagonistas & inibidores , Fator Estimulador de Colônias de Granulócitos/imunologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Osteoblastos/efeitos dos fármacos , Osteoblastos/microbiologia , Osteomielite/diagnóstico por imagem , Osteomielite/tratamento farmacológico , Osteomielite/microbiologia , Transdução de Sinais , Infecções Estafilocócicas/diagnóstico por imagem , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Tíbia/microbiologia , Fatores de Tempo , Microtomografia por Raio-X
13.
Proc Natl Acad Sci U S A ; 113(50): 14360-14365, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911782

RESUMO

Osteoarthritis (OA) is the most common joint disease, characterized by progressive destruction of the articular cartilage. The surface of joint cartilage is the first defensive and affected site of OA, but our knowledge of genesis and homeostasis of this superficial zone is scarce. EGFR signaling is important for tissue homeostasis. Immunostaining revealed that its activity is mostly dominant in the superficial layer of healthy cartilage but greatly diminished when OA initiates. To evaluate the role of EGFR signaling in the articular cartilage, we studied a cartilage-specific Egfr-deficient (CKO) mouse model (Col2-Cre EgfrWa5/flox). These mice developed early cartilage degeneration at 6 mo of age. By 2 mo of age, although their gross cartilage morphology appears normal, CKO mice had a drastically reduced number of superficial chondrocytes and decreased lubricant secretion at the surface. Using superficial chondrocyte and cartilage explant cultures, we demonstrated that EGFR signaling is critical for maintaining the number and properties of superficial chondrocytes, promoting chondrogenic proteoglycan 4 (Prg4) expression, and stimulating the lubrication function of the cartilage surface. In addition, EGFR deficiency greatly disorganized collagen fibrils in articular cartilage and strikingly reduced cartilage surface modulus. After surgical induction of OA at 3 mo of age, CKO mice quickly developed the most severe OA phenotype, including a complete loss of cartilage, extremely high surface modulus, subchondral bone plate thickening, and elevated joint pain. Taken together, our studies establish EGFR signaling as an important regulator of the superficial layer during articular cartilage development and OA initiation.


Assuntos
Artrite Experimental/metabolismo , Cartilagem Articular/metabolismo , Receptores ErbB/metabolismo , Osteoartrite/metabolismo , Animais , Artrite Experimental/patologia , Artrite Experimental/prevenção & controle , Células Cultivadas , Condrócitos/metabolismo , Condrócitos/patologia , Condrogênese , Receptores ErbB/deficiência , Receptores ErbB/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Osteoartrite/patologia , Osteoartrite/prevenção & controle , Proteoglicanas/metabolismo , Transdução de Sinais
14.
Biochem Biophys Res Commun ; 506(1): 194-203, 2018 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-30342851

RESUMO

Osteoporosis is widely viewed as a major public health concern, but the exact magnitude of the problem is uncertain. MicroRNAs play a key role in maintaining bone development and metabolism. This study aims to investigate the effects that microRNA-874 (miR-874) has on osteoblast proliferation and differentiation in osteoporosis rats by targeting SUFU through the Hedgehog signaling pathway. Twenty Wistar female rats were selected for following experiment, and another 20 rats were served as the normal group. Their osteogenic tissues were obtained and the positive expression of SUFU in tissues was determined. Rat osteoblasts were isolated and. The targeting relationship between SUFU and miR-874 was verified and the expression of miR-874, SUFU, Sonic Hedgehog (Shh), Ptch, Smoothened (Smo), bone morphogenetic protein (BMP2), Runx2, proliferating cell nuclear antigen (PCNA) and Bcl-2 associated X protein (Bax) were identified. Besides, cell viability apoptosis, and differentiation were confirmed respectively. Moreover, calcium nodules were observed. Overexpression of SUFU and Bax but lower expression of miR-874, Shh, Ptch, Smo, BMP2, Runx2, and PCNA were found in osteoporosis mice. Besides, elevated expression of miR-874, Shh, Ptch, Smo, BMP2, Runx2 and PCNA, as well as increased cell viability, ALP activity and calcium nodules but decreased expression of SUFU and Bax, and reduced cell apoptosis were confirmed when treated with miR-874 mimic. And it is reciprocal when miR-874 was inhibited. Our study demonstrated that through targeted inhibition of SUFU and activation of Hedgehog signaling pathway, miR-874 could promote the proliferation and differentiation of osteoblasts in osteoporosis rats.


Assuntos
Proteínas Hedgehog/metabolismo , MicroRNAs/fisiologia , Osteoblastos/citologia , Osteoporose/patologia , Proteínas Repressoras/antagonistas & inibidores , Animais , Apoptose , Diferenciação Celular , Proliferação de Células , Feminino , Osteoporose/metabolismo , Ratos , Ratos Wistar , Proteínas Repressoras/análise , Transdução de Sinais
15.
Toxicol Appl Pharmacol ; 351: 12-20, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29753006

RESUMO

Dexamethasone is routinely used for treating those mothers at risk for preterm delivery. However, overexposure to exogenous glucocorticoids induces bone loss in offspring, and the "critical window" and safe dose of this treatment are largely unknown. In this study, we found that femoral length, and the length of the primary ossification center were significantly reduced in fetal mice after repeated prenatal dexamethasone exposure (PDE). Compared with single-course exposure on gestational day (GD)15, newborn mice with repeated PDE (3 times, from GD15 to 17) showed a significant decrease in femoral trabecular bone mass with decreased trabecular number and thickness. For those newborn mice treated after repeated PDE at different doses (0, 0.2, 0.8, and 1.2 mg/kg/d), the toxic effect of dexamethasone on bone development was observed at 0.8 and 1.2 mg/kg/d. More severe retardation in bone development was observed in the fetal mice after PDE at 0.8 mg/kg/d during GD12-14, compared with that during GD15-17. Interestingly, stronger toxic effects were observed in male newborn mice after PDE than were observed in female newborn mice. In conclusion, PDE with multiple course, higher dose, or exposure at an early stage of pregnancy have stronger toxic effects on bone development of fetal mice.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Dexametasona/toxicidade , Fêmur/efeitos dos fármacos , Desenvolvimento Fetal/efeitos dos fármacos , Glucocorticoides/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Desenvolvimento Ósseo/fisiologia , Dexametasona/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Fêmur/embriologia , Fêmur/patologia , Desenvolvimento Fetal/fisiologia , Glucocorticoides/administração & dosagem , Masculino , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia
17.
FASEB J ; 30(2): 785-97, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26499267

RESUMO

This study aimed to evaluate whether female adult offspring born with intrauterine growth retardation induced by prenatal nicotine exposure (PNE) are susceptible to osteoarthritis (OA) and to explore the underlying programming mechanisms. Pregnant rats were treated with nicotine or saline at 2.0 mg/kg/d from gestational d 11 to 20. The female adult offspring with or without PNE were forced with a strenuous treadmill running for 6 wk to induce OA. Nicotine's effects on fetal articular chondrocytes were studied by exposing chondrocytes to nicotine for 10 d, and dihydro-ß-erythroidine, a selective α4ß2-nicotinic acetylcholine receptor (nAChR) inhibitor, was used to identify the change of nicotine's effect. For adult offspring, increased cartilage destruction and accelerated OA progression were observed in the PNE group with running; the expression of α1 chain of type II collagen (Col2A1), aggrecan, SRY-type high mobility group box 9 (Sox9), and IGF1 signaling molecules in the cartilage of PNE offspring were decreased. For fetuses, elevated serum corticosteroid and nicotine levels and suppressed IGF1 levels were observed; expression of Col2A1, aggrecan, Sox9, and IGF1 were reduced. The result of chondrocytes revealed that nicotine impeded the expression of Col2A1, aggrecan, and IGF1; blocking α4ß2-nAChR rescued nicotine's suppression. In conclusion, PNE increases the susceptibility of adult offspring to OA; the potential mechanism involves IGF1 low-functional programming in articular cartilage caused directly by the action of nicotine on α4ß2-nAChR.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Exposição Materna/efeitos adversos , Nicotina/efeitos adversos , Osteoartrite/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Suscetibilidade a Doenças , Feminino , Fator de Crescimento Insulin-Like I/genética , Nicotina/farmacologia , Osteoartrite/induzido quimicamente , Osteoartrite/genética , Osteoartrite/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Wistar
18.
Toxicol Appl Pharmacol ; 305: 234-241, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27338645

RESUMO

Prenatal ethanol exposure (PEE) inhibits longitudinal growth of fetal bones, but the underlying mechanisms remain unknown. In this study, we aimed to investigate how PEE induces the retardation of long bone development in fetal rats. Pregnant Wistar rats were treated with ethanol or distilled water (control group) by gavage from gestational day (GD) 9 to 20. Fetuses were delivered by cesarean section on GD20. Fetal sera were collected for assessing corticosterone (CORT) level. Fetal long bones were harvested for histochemical, immunohistochemical and gene expression analysis. Primary chondrocytes were treated with ethanol or CORT for analyzing genes expression. PEE fetuses showed a significant reduction in birth weight and body length. The serum CORT concentration in PEE group was significantly increased, while the body weight, body length and femur length all were significantly decreased in the PEE group. The length of the epiphyseal hypertrophy zone was enlarged, whereas the length of the primary ossification center was significantly reduced in PEE fetuses. TUNEL assay showed reduced apoptosis in the PEE group. Further, the gene expression of osteoprotegerin (OPG) was markedly up-regulated. In vitro experiments showed that CORT (but not ethanol) treatment significantly activated the expression of OPG, while the application of glucocorticoid receptor inhibitor, mifepristone, attenuated these change induced by CORT. These results indicated that PEE-induced glucocorticoid over-exposure enhanced the expression of OPG in fetal epiphyseal cartilage and further lead to the suppressed osteoclast differentiation in the chondro-osseous junction and consequently inhibited the endochondral ossification in long bones of fetal rats.


Assuntos
Etanol/toxicidade , Fêmur/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Feminino , Fêmur/crescimento & desenvolvimento , Feto , Osteoclastos/efeitos dos fármacos , Osteoclastos/fisiologia , Gravidez , Ratos Wistar
19.
J Biol Chem ; 288(45): 32229-32240, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24047892

RESUMO

The epidermal growth factor receptor (EGFR) is an essential player in the development of multiple organs during embryonic and postnatal stages. To understand its role in epiphyseal cartilage development, we generated transgenic mice with conditionally inactivated EGFR in chondrocytes. Postnatally, these mice exhibited a normal initiation of cartilage canals at the perichondrium, but the excavation of these canals into the cartilage was strongly suppressed, resulting in a delay in the formation of the secondary ossification center (SOC). This delay was accompanied by normal chondrocyte hypertrophy but decreased mineralization and apoptosis of hypertrophic chondrocytes and reduced osteoclast number at the border of marrow space. Immunohistochemical analyses demonstrated that inactivation of chondrocyte-specific EGFR signaling reduced the amounts of matrix metalloproteinases (MMP9, -13, and -14) and RANKL (receptor activator of NF-κB ligand) in the hypertrophic chondrocytes close to the marrow space and decreased the cartilage matrix degradation in the SOC. Analyses of EGFR downstream signaling pathways in primary epiphyseal chondrocytes revealed that up-regulation of MMP9 and RANKL by EGFR signaling was partially mediated by the canonical Wnt/ß-catenin pathway, whereas EGFR-enhanced MMP13 expression was not. Further biochemical studies suggested that EGFR signaling stimulates the phosphorylation of LRP6, increases active ß-catenin level, and induces its nuclear translocation. In line with these in vitro studies, deficiency in chondrocyte-specific EGFR activity reduced ß-catenin amount in hypertrophic chondrocytes in vivo. In conclusion, our work demonstrates that chondrocyte-specific EGFR signaling is an important regulator of cartilage matrix degradation during SOC formation and epiphyseal cartilage development and that its actions are partially mediated by activating the ß-catenin pathway.


Assuntos
Condrócitos/metabolismo , Receptores ErbB/metabolismo , Lâmina de Crescimento/embriologia , Via de Sinalização Wnt/fisiologia , Animais , Colagenases/biossíntese , Colagenases/genética , Receptores ErbB/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Lâmina de Crescimento/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Camundongos Knockout , Fosforilação/fisiologia , Ligante RANK/genética , Ligante RANK/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
20.
Am J Pathol ; 182(3): 917-27, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23274133

RESUMO

Osteochondromas and enchondromas are the most common tumors affecting the skeleton. Osteochondromas can occur as multiple lesions, such as those in patients with hereditary multiple exostoses. Unexpectedly, while studying the role of ß-catenin in cartilage development, we found that its conditional deletion induces ectopic chondroma-like cartilage formation in mice. Postnatal ablation of ß-catenin in cartilage induced lateral outgrowth of the growth plate within 2 weeks after ablation. The chondroma-like masses were present in the flanking periosteum by 5 weeks and persisted for more than 6 months after ß-catenin ablation. These long-lasting ectopic masses rarely contained apoptotic cells. In good correlation, transplants of ß-catenin-deficient chondrocytes into athymic mice persisted for a longer period of time and resisted replacement by bone compared to control wild-type chondrocytes. In contrast, a ß-catenin signaling stimulator increased cell death in control chondrocytes. Immunohistochemical analysis revealed that the amount of detectable ß-catenin in cartilage cells of osteochondromas obtained from hereditary multiple exostoses patients was much lower than that in hypertrophic chondrocytes in normal human growth plates. The findings in our study indicate that loss of ß-catenin expression in chondrocytes induces periosteal chondroma-like masses and may be linked to, and cause, the persistence of cartilage caps in osteochondromas.


Assuntos
Neoplasias Ósseas/patologia , Condroma/patologia , Periósteo/patologia , beta Catenina/deficiência , Fosfatase Ácida/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/metabolismo , Cartilagem/diagnóstico por imagem , Cartilagem/patologia , Proliferação de Células/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Condrócitos/transplante , Condroma/diagnóstico por imagem , Condroma/metabolismo , Coristoma/diagnóstico por imagem , Coristoma/patologia , Colágeno Tipo II/metabolismo , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/metabolismo , Lâmina de Crescimento/patologia , Humanos , Marcação In Situ das Extremidades Cortadas , Indóis/farmacologia , Integrases/metabolismo , Isoenzimas/metabolismo , Camundongos , Osteocondroma/metabolismo , Osteocondroma/patologia , Oximas/farmacologia , Periósteo/diagnóstico por imagem , Periósteo/efeitos dos fármacos , Periósteo/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Radiografia , Costelas/patologia , Tamoxifeno/farmacologia , Fosfatase Ácida Resistente a Tartarato , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa