Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 153(5): 1012-24, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23706739

RESUMO

Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here, we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation of histones. Most proteasomes in mammalian testes ("spermatoproteasomes") contain a spermatid/sperm-specific α subunit α4 s/PSMA8 and/or the catalytic ß subunits of immunoproteasomes in addition to PA200. Deletion of PA200 in mice abolishes acetylation-dependent degradation of somatic core histones during DNA double-strand breaks and delays core histone disappearance in elongated spermatids. Purified PA200 greatly promotes ATP-independent proteasomal degradation of the acetylated core histones, but not polyubiquitinated proteins. Furthermore, acetylation on histones is required for their binding to the bromodomain-like regions in PA200 and its yeast ortholog, Blm10. Thus, PA200/Blm10 specifically targets the core histones for acetylation-mediated degradation by proteasomes, providing mechanisms by which acetylation regulates histone degradation, DNA repair, and spermatogenesis.


Assuntos
Reparo do DNA , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Espermatogênese , Testículo/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Quebras de DNA de Cadeia Dupla , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/química , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
2.
J Am Chem Soc ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847788

RESUMO

Previous findings have suggested a close association between oxygen vacancies in SnO2 and charge carrier recombination as well as perovskite decomposition at the perovskite/SnO2 interface. Underlying the fundamental mechanism holds great significance in achieving a more favorable balance between the efficiency and stability. In this study, we prepared three SnO2 samples with different oxygen vacancy concentrations and observed that a low oxygen vacancy concentration is conducive to long-term device stability. Iodide ions were observed to easily diffuse into regions with high oxygen vacancies, thereby speeding up the deprotonation of FAI, as made evident by the detection of the decomposition product formamide. In contrast, a high oxygen vacancy concentration in SnO2 could prevent hole injection, leading to a decrease in interfacial recombination losses. To suppress this decomposition reaction and address the trade-off, we designed a bilayer SnO2 structure to ensure highly efficient carrier transport still while maintaining a chemically inert surface. As a result, an enhanced efficiency of 25.06% (certified at 24.55% with an active area of 0.09 cm2 under fast scan) was achieved, and the extended operational stability maintained 90% of their original efficiency (24.52%) after continuous operation for nearly 2000 h. Additionally, perovskite submodules with an active area of 14 cm2 were successfully assembled with a PCE of up to 22.96% (20.09% with an aperture area).

3.
BMC Microbiol ; 24(1): 97, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521894

RESUMO

BACKGROUND: Primary nephrotic syndrome (PNS) is a common glomerular disease in children. Clostridium butyricum (C. butyricum), a probiotic producing butyric acid, exerts effective in regulating inflammation. This study was designed to elucidate the effect of C. butyricum on PNS inflammation through the gut-kidney axis. METHOD: BALB/c mice were randomly divided into 4 groups: normal control group (CON), C. butyricum control group (CON+C. butyricum), PNS model group (PNS), and PNS with C. butyricum group (PNS+C. butyricum). The PNS model was established by a single injection of doxorubicin hydrochloride (DOX) through the tail vein. After 1 week of modeling, the mice were treated with C. butyricum for 6 weeks. At the end of the experiment, the mice were euthanized and associated indications were investigated. RESULTS: Since the successful modeling of the PNS, the 24 h urine protein, blood urea nitrogen (BUN), serum creatinine (SCr), urine urea nitrogen (UUN), urine creatinine (UCr), lipopolysaccharides (LPS), pro-inflammatory interleukin (IL)-6, IL-17A were increased, the kidney pathological damage was aggravated, while a reduction of body weights of the mice and the anti-inflammatory IL-10 significantly reduced. However, these abnormalities could be dramatically reversed by C. butyricum treatment. The crucial Th17/Tregs axis in PNS inflammation also was proved to be effectively regulated by C. butyricum treatment. This probiotic intervention notably affected the expression levels of signal transducer and activator of transcription 3 (STAT3), Heme oxygenase-1 (HO-1) protein, and retinoic acid-related orphan receptor gamma t (RORγt). 16S rRNA sequencing showed that C. butyricum could regulate the composition of the intestinal microbial community and found Proteobacteria was more abundant in urine microorganisms in mice with PNS. Short-chain fatty acids (SCFAs) were measured and showed that C. butyricum treatment increased the contents of acetic acid, propionic acid, butyric acid in feces, acetic acid, and valeric acid in urine. Correlation analysis showed that there was a closely complicated correlation among inflammatory indicators, metabolic indicators, microbiota, and associated metabolic SCFAs in the gut-kidney axis. CONCLUSION: C. butyricum regulates Th17/Tregs balance via the gut-kidney axis to suppress the immune inflammatory response in mice with PNS, which may potentially contribute to a safe and inexpensive therapeutic agent for PNS.


Assuntos
Clostridium butyricum , Síndrome Nefrótica , Humanos , Criança , Camundongos , Animais , RNA Ribossômico 16S , Inflamação , Rim , Ácidos Graxos Voláteis , Butiratos , Interleucina-6 , Acetatos
4.
Drug Metab Dispos ; 52(3): 210-217, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38195521

RESUMO

Valproic acid (VPA) is a first-line antiepileptic drug with broad efficacy. Due to significant individual differences in its metabolism, therapeutic drug monitoring is commonly used. However, the recommended therapeutic range (50-100 µg/mL) is inadequate for predicting clinical outcomes. Additionally, the relationship between VPA metabolites and clinical outcomes remains unclear. In this retrospective study, 485 Chinese Southern Han epilepsy patients receiving VPA monotherapy were analyzed after reaching steady-state levels. Plasma concentrations of VPA and its five main metabolites were determined by liquid chromatography-mass spectrometry (LC-MS). We assessed the relevance of the recommended therapeutic VPA range for clinical outcomes and explored the association between VPA/metabolites levels and treatment efficacy/adverse effects. Vitro experiments were conducted to assess 4-ene-VPA hepatotoxicity. The therapeutic range of VPA exhibited no significant correlation with clinical outcomes, and plasma concentrations of VPA failed to serve as predictive indicators for treatment response/adverse effects. Treatment responders had higher 2-PGA concentrations (median, 26.39 ng/mL versus 13.68 ng/mL), with a threshold of 36.5 ng/mL for optimal epilepsy treatment. Patients with abnormal liver function had a higher 4-ene-VPA median concentration (6.41 µg/mL versus 4.83 µg/mL), and the ratio of 4-ene-VPA to VPA better predicted VPA-induced hepatotoxicity (area under the curve, 0.718) than 4-ene-VPA concentration. Vitro experiments revealed that 4-ene-VPA was more hepatotoxic than VPA in HepaRG and L02 cell lines. Total plasma VPA concentration does not serve as a predictor of clinical outcomes. 2-PGA concentrations may be associated with efficacy, whereas the ratio of 4-ene-VPA to VPA may be considered a better biomarker (threshold 10.03%) for VPA-induced hepatotoxicity. SIGNIFICANCE STATEMENT: This was the first and largest observational cohort in China to explore the relationship between patients' parent and metabolites concentrations of VPA and clinical outcomes during the maintenance of VPA monotherapy in epileptic patients. This study provided feasible references of VPA for epilepsy clinical treatment with a larger sample of patients compared with previous studies for a more definitive conclusion based on real-world situations. We found two potential biomarkers in predicting efficacy and liver injury, respectively. This breakthrough has the potential to assist in the rational use of VPA.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Epilepsia , Humanos , Anticonvulsivantes/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Monitoramento de Medicamentos , Epilepsia/tratamento farmacológico , Estudos Retrospectivos , Ácido Valproico/efeitos adversos
5.
Environ Res ; 255: 119150, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763282

RESUMO

The coverage of accumulated snow plays a significant role in inducing changes in both microbial activity and environmental factors within freeze-thaw soil systems. This study aimed to analyze the impact of snow cover on the dynamics of archeal communities in freeze-thaw soil. Furthermore, it seeks to investigate the role of fertilization in freeze-thaw soil. Four treatments were established based on snow cover and fertilization:No snow and no fertilizer (CK-N), snow cover without fertilizer (X-N), fertilizer without snow cover (T-N), and both fertilizer and snow cover (T-X). The research findings indicated that after snow cover treatment, the carbon, nitrogen, and phosphorus content in freeze-thaw soil exhibit periodic fluctuations. Snow covered effectively altered the community composition of bacteria and archaea in the soil, with a greater impact on archaeal communities than on bacterial communities. Snow covered improves the stability of archaeal communities in freeze-thaw soil. Additionally, the arrival of snow also enhanced the correlation between archaea and environmental factors, with the key archaeal phyla involved being Nanoarchaeota and Crenarchaeota. Further research showed that the application of organic fertilizers also had some impact on freeze-thaw soil, but this impact was smaller compared to snow cover. In summary, the arrival of snow could alter the archaeal community and protect nutrient elements in freeze-thaw soil, reducing their loss, and its effect is more pronounced compared to the application of organic fertilizers.


Assuntos
Archaea , Fertilizantes , Congelamento , Neve , Microbiologia do Solo , Solo , Fertilizantes/análise , Solo/química , Nitrogênio/análise
6.
Biochem Genet ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526710

RESUMO

Helicobacter pylori (H. pylori) is implicated in the aberrant proliferation and malignant transformation of gastric mucosal cells, heightening the risk of gastric cancer (GC). HN1 is involved in the development of various tumors. However, precise mechanistic underpinnings of HN1 promoting GC progression in H. pylori remain elusive. The study collected 79 tissue samples of GC patients, including 47 with H. pylori-positive GC and 32 H. pylori-negative controls. Using human gastric epithelial cells (GES-1) and human gastric adenocarcinoma cells (HGC-27), the effect of overexpression / knocking down of HN1 and H. pylori infection was evaluated on cell function (proliferation, migration, apoptosis), cytoskeleton, and expression of cell malignant phenotype factors that promote the malignant biological behavior of cancer cells. The expression of HN1 in GC tissues is higher than that in paracancerous tissue and is closely related to infiltration, lymphatic metastasis, distant metastasis, survival, and H. pylori infection. Downregulation of HN1 effectively hinders the ability of H. pylori strains 26695 and SS1 to promote migration of GES-1 and HGC-27 cells, while lowering the expression of key indicators associated with malignant phenotype. Downregulated GSK3B, ß-catenin, and Vimentin after knockdown Integrinß1, but HN1 expression remained largely unchanged, when HN1 and Integrinß1 were knocked down, GSK3B, ß-catenin, and Vimentin expression were considerably reduced. Our research demonstrated the crucial role of HN1 in H. pylori-induced acquisition of a malignant phenotype in GES-1 cells. Knockdown of HN1 blocked the pathogenic mechanism of H. pylori-induced GC and downregulated the expression of GSK3Β, ß-catenin and Vimentin via Integrin ß1.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38607196

RESUMO

Objective: To study and compare the efficacy and clinical value of aminophylline and doxofylline in the clinical treatment of chronic obstructive pulmonary disease (COPD). Method: The study analyzed the clinical data of 92 patients with chronic obstructive pulmonary disease who received either aminophylline or doxofylline treatment in the hospital from January 2020 to June 2022. The patients were divided into a control group composed of 46 COPD patients who received aminophylline treatment and a study group composed of 46 COPD patients who received doxofylline treatment. The two groups' total effective rate and incidence of adverse reactions were compared. The serum inflammatory factor indicators, symptom scores, pulmonary ventilation function, arterial blood gas, chest and lung responsiveness, sleep status indicators, and quality of life scores of the two groups before and after treatment were compared. Results: At the end of treatment, the total effective rate was higher in the study group compared to the control group (P < .05). Regarding adverse reactions, the study group's total incidence was lower than the control group's (P < .05). After treatment, the levels of serum inflammatory factor indicators of CRP, PCT, and TNF- α in both groups were decreased compared with those before treatment; while comparing the above indicators between the groups, it was found that the values in the study group were lower (all P < .05). After treatment, the scores of symptoms such as cough, expectoration, and shortness of breath in both groups of patients were significantly lower than before treatment, while compared to the control group, the scores of all symptoms were lower in the study group (P < .05). After treatment, compared with FEV1, FEV1/FVC, PaO2, and PaCO2 before treatment, the above indicators in both groups were significantly improved. However, compared with various indicators in the control group, the values of FEV1, FEV1/FVC, and PaO2 in the study group were higher, while the values of PaCO2 in the study group were lower (all P < .05). After treatment, the measured values of indicators such as thoracic compliance, lung compliance, and total compliance in the two groups were significantly higher compared with those before the treatment, while compared to the control group, the values of all indicators in the study group were higher (P < .05). After treatment, compared with the control group's monitoring of various indicators of nighttime sleep, the study group obtained better data on monitoring of sleep latency and actual sleep duration. The group obtained lower scores in sleep quality evaluation, while the two groups significantly improved their sleep-related data in night-time monitoring and evaluation compared to those before treatment, with all P < .05. After treatment, the scores in various aspects of the quality of life of patients in both groups were significantly increased compared to those before treatment, and after comparing the scores of various quality of life between the two groups, it was found that the study group was higher than the control group (all P < .05). Conclusion: After the onset of COPD, doxofylline treatment can achieve better effects than aminophylline treatment.

8.
Inflammopharmacology ; 32(1): 809-823, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177566

RESUMO

The treatment of immunomodulation in multiple sclerosis (MS) can alleviate the severity and relapses. However, it cannot improve the neurological disability of patients due to a lack of myelin protection and regeneration. Therefore, remyelinating therapies may be one of the feasible strategies that can prevent axonal degeneration and restore neurological disability. Natural product icariin (ICA) is a flavonol compound extracted from epimedium flavonoids, which has neuroprotective effects in several models of neurological diseases. Here, we attempt to explore whether ICA has the potential to treat demyelination and its possible mechanisms of action using lipopolysaccharide-treated BV2 microglia, primary microglia, bone marrow-derived macrophages, and cuprizone-induced demyelination model. The indicators of oxidative stress and inflammatory response were evaluated using commercial kits. The results showed that ICA significantly reduced the levels of oxidative intermediates nitric oxide, hydrogen peroxide, malondialdehyde, and inflammatory cytokines TNF-α, IL-1ß, and increased the levels of antioxidants superoxide dismutase, catalase, glutathione peroxidase, and anti-inflammatory cytokines IL-10 and TGF-ß in vitro cell experiments. In vivo demyelination model, ICA significantly alleviated the behavioral abnormalities and enhanced the integrated optical density/mm2 of Black Gold II and myelin basic protein myelin staining, accompanied by the inhibition of oxidative stress/inflammatory response. Immunohistochemical staining showed that ICA significantly induced the expression of nuclear factor erythroid derived 2/heme oxygenase-1 (Nrf2/HO-1) and inhibited the expression of toll-like receptor 4/ nuclear factor kappa B (TLR4/NF-κB), which are two key signaling pathways in antioxidant and anti-inflammatory processes. Our results strongly suggest that ICA may be used as a potential agent to treat demyelination via regulating Nrf2/HO-1-mediated antioxidative stress and TLR4/NF-κB-mediated inflammatory responses.


Assuntos
Antioxidantes , Doenças Desmielinizantes , Flavonoides , Humanos , Antioxidantes/farmacologia , Cuprizona/farmacologia , Receptor 4 Toll-Like , NF-kappa B , Fator 2 Relacionado a NF-E2 , Anti-Inflamatórios/farmacologia , Citocinas , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico
9.
Plant Cell Physiol ; 64(6): 646-659, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-36961744

RESUMO

Hypocotyl elongation is inhibited by light and promoted by darkness. The plant hormone abscisic acid (ABA) also inhibits hypocotyl elongation. However, details of the molecular mechanism that regulates the integrated effects of light and ABA signaling on hypocotyl elongation remain unclear. Long non-coding RNAs (lncRNAs; >200 nt) do not encode proteins but play many physiological roles in organisms. Until now, only a few lncRNAs related to hypocotyl elongation have been reported. The lncRNAs BoNR8 (272 nt) and AtR8 (259 nt), both of which are transcribed by RNA polymerase III, are homologous lncRNAs that are abundantly present in cabbage and Arabidopsis, respectively. These lncRNAs shared 77% sequence identity, and their predicted RNA secondary structures were similar; the non-conserved nucleotides in both sequences were positioned mainly in the stem-loop regions of the secondary structures. A previous study showed that BoNR8 regulated seed germination along with ABA and that AtR8 may be involved in innate immune function in Arabidopsis. Our results show that the expression levels of BoNR8 and AtR8 were differentially affected by light and ABA and that overexpression (OX) of both BoNR8 and AtR8 in Arabidopsis regulated hypocotyl elongation depending on light and ABA.. The expression levels of light-related genes PHYB, COP1, HY5 and PIF4 and ABA-related genes ABI3 and ABI5 were altered in the AtR8-OX and BoNR8-OX lines, and, in an ABI3-defective mutant, hypocotyl elongation was greatly increased under dark condition with the addition of ABA. These results indicate that BoNR8 and AtR8 regulate hypocotyl elongation together with ABI3 and key downstream light signaling genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Longo não Codificante , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Hipocótilo/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Polimerase III/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Crit Rev Microbiol ; 49(2): 283-296, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35358006

RESUMO

Phage treatment of bacterial infections has offered some hope even as the crisis of antimicrobial resistance continues to be on the rise. However, bacterial resistance to phage is another looming challenge capable of undermining the effectiveness of phage therapy. Moreover, the consideration of including phage therapy in modern medicine calls for more careful research around every aspect of phage study. In an attempt to adequately prepare for the events of phage resistance, many studies have attempted to experimentally evolve phage resistance in different bacterial strains, as well as train phages to evolve counter-infectivity of resistant bacterial mutants, in view of answering such questions as coevolutionary dynamics between phage and bacteria, mechanisms of phage resistance, fitness costs of phage resistance on bacteria, etc. In this review, we summarised many such studies and by careful examination, highlighted critical issues to the outcome of phage therapy. We also discuss the insufficiency of many of these in vitro studies to represent actual disease conditions during phage application, alongside other complications that exist in phage-bacterial evolutionary interactions. Conclusively, we present the exploitation of phage-bacterial interactions for successful infection managements, as well as some future perspectives to direct phage research.


Assuntos
Infecções Bacterianas , Bacteriófagos , Humanos , Bacteriófagos/genética , Bactérias/genética , Evolução Biológica , Modelos Teóricos , Infecções Bacterianas/terapia
11.
J Med Virol ; 95(1): e28281, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36329614

RESUMO

Breast milk has been found to inhibit coronavirus infection, while the key components and mechanisms are unknown. We aimed to determine the components that contribute to the antiviral effects of breastmilk and explore their potential mechanism. Lactoferrin (Lf) and milk fat globule membrane inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related coronavirus GX_P2V and transcription- and replication-competent SARS-CoV-2 virus-like particles in vitro and block viral entry into cells. We confirmed that bovine Lf (bLf) blocked the binding between human angiotensin-converting enzyme 2 and SARS-CoV-2 spike protein by combining receptor-binding domain (RBD). Importantly, bLf inhibited RNA-dependent RNA polymerase (RdRp) activity of both SARS-CoV-2 and SARS-CoV in vitro in the nanomolar range. So far, no biological macromolecules have been reported to inhibit coronavirus RdRp. Our result indicated that bLf plays a major role in inhibiting viral replication. bLf treatment reduced viral load in lungs and tracheae and alleviated pathological damage. Our study provides evidence that bLf prevents SARS-CoV-2 infection by combining SARS-CoV-2 spike protein RBD and inhibiting coronaviruses' RdRp activity, and may be a promising candidate for the treatment of coronavirus disease 2019.


Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Humanos , Cricetinae , SARS-CoV-2/metabolismo , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Antivirais/farmacologia , Antivirais/química , RNA Polimerase Dependente de RNA/metabolismo
12.
Phytopathology ; 113(5): 873-883, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36812407

RESUMO

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most important diseases on wheat worldwide and can lead to a large reduction in wheat production. Class III peroxidases (PODs), a kind of secretory enzyme and members of a multigene family in higher plants, have been linked to various plant physiological functions and defensive responses. However, the role of PODs in wheat resistance to Bgt remains unclear. TaPOD70, a class III POD gene, was identified from the proteomics sequencing of the incompatible interaction between wheat (Triticum aestivum) cultivar Xingmin 318 and Bgt isolate E09. After transient expression of the TaPOD70-GFP fusion protein in Nicotiana benthamiana leaves, TaPOD70 was located in the membrane region. Yeast secretion assay showed that TaPOD70 was a secretory protein. Furthermore, Bax-induced programmed cell death was inhibited by transient expression of TaPOD70 in N. benthamiana. The transcript expression level of TaPOD70 was significantly upregulated in the wheat-Bgt compatible interaction. More crucially, knocking down TaPOD70 using virus-induced gene silencing increased wheat resistance to Bgt compared with the control plants. In response to Bgt, histological analyses indicated that hyphal development of Bgt was significantly reduced, whereas H2O2 production was enhanced in TaPOD70-silenced leaves. These findings imply that TaPOD70 may act as a susceptibility factor, adversely regulating wheat resistance to Bgt.


Assuntos
Proteínas de Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/genética , Resistência à Doença/genética
13.
Am J Respir Crit Care Med ; 206(12): 1534-1545, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35819321

RESUMO

Rationale: Previous genetic studies of obstructive sleep apnea (OSA) have limitations in terms of precise case definition, integrated quantitative traits, and interpretation of genetic functions; thus, the heritability of OSA remains poorly explained. Objectives: To identify novel genetic variants associated with OSA and objective sleep-related traits and to explore their functional roles. Methods: A genome-wide association study was performed in 20,590 Han Chinese individuals (5,438 OSA and 15,152 control samples). Human samples and point mutation knockin mice were used for follow-up investigation of gene functions. Measurements and Main Results: Two characteristic study-wide significant loci (P < 2.63 × 10-9) for OSA were identified: the PACRG intronic variant rs6455893 on 6q26 (odds ratio [OR] = 1.62; 95% confidence interval [CI], 1.39-1.89; P = 6.98 × 10-10) and the missense variant rs3746804 (p.Pro267Leu) in the riboflavin transporter SLC52A3 on 20p13 (OR = 0.83; 95% CI, 0.79-0.88; P = 7.57 × 10-10). In addition, 18 genome-wide significant loci associated with quantitative OSA and objective sleep-related traits were identified, 5 of which exceeded the study-wide significance threshold. Rs3746804 was associated with elevated serum riboflavin concentrations, and the corresponding mutation in mice increased riboflavin concentrations, suggesting that this variant may facilitate riboflavin uptake and riboflavin-dependent physiological activity. Conclusions: We identified several novel genome-wide significant loci associated with OSA and objective sleep-related traits. Our findings provide insight into the genetic architecture of OSA and suggest that SLC52A3 might be a therapeutic target, whereas riboflavin might be a therapeutic agent.


Assuntos
Estudo de Associação Genômica Ampla , Apneia Obstrutiva do Sono , Animais , Humanos , Camundongos , População do Leste Asiático , Proteínas de Membrana Transportadoras/genética , Proteínas dos Microfilamentos/genética , Chaperonas Moleculares/genética , Riboflavina , Sono , Apneia Obstrutiva do Sono/genética
14.
J Fish Dis ; 46(8): 813-827, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37171060

RESUMO

In this study, RNAi technology was used to silence the gene rstA in Aeromonas hydrophila. The strain rstA-RNAi displayed significant decrease in intracellular survival compared with that of the wild-type strain B11. Transcriptome analysis explored that the expression of some important anti-stress protein genes was significantly upregulated in rstA-RNAi compared with the wild-type strain, while the expression of the genes related to iron acquisition and type VI secretion system was significantly downregulated. Further study found that under low pH and H2 O2 stress, the anti-stress protein genes were expressed at a low level in rstA-RNAi, the growth ability of rstA-RNAi was also significantly lower than that of wild-type strain. The results also displayed that with the fluctuation of iron concentration, the expression of some genes related to iron acquisition remained at a low level in rstA-RNAi, and the growth ability of rstA-RNAi was lower than that of the wild-type strain under the same culture conditions, indicating rstA can regulate iron acquisition and further affect the bacteria growth. The adhesion ability of rstA-RNAi to fish macrophages was reduced, suggesting rstA may be also affect the formation of type VI secretion system of A. hydrophila.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Sistemas de Secreção Tipo VI , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Aeromonas hydrophila/fisiologia , Doenças dos Peixes/microbiologia , Peixes/microbiologia , Ferro/metabolismo , Infecções por Bactérias Gram-Negativas/veterinária
15.
Sensors (Basel) ; 23(16)2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37631817

RESUMO

In recent years, neural network algorithms have demonstrated tremendous potential for modulation classification. Deep learning methods typically take raw signals or convert signals into time-frequency images as inputs to convolutional neural networks (CNNs) or recurrent neural networks (RNNs). However, with the advancement of graph neural networks (GNNs), a new approach has been introduced involving transforming time series data into graph structures. In this study, we propose a CNN-transformer graph neural network (CTGNet) for modulation classification, to uncover complex representations in signal data. First, we apply sliding window processing to the original signals, obtaining signal subsequences and reorganizing them into a signal subsequence matrix. Subsequently, we employ CTGNet, which adaptively maps the preprocessed signal matrices into graph structures, and utilize a graph neural network based on GraphSAGE and DMoNPool for classification. Extensive experiments demonstrated that our method outperformed advanced deep learning techniques, achieving the highest recognition accuracy. This underscores CTGNet's significant advantage in capturing key features in signal data and providing an effective solution for modulation classification tasks.

16.
J Bacteriol ; 204(3): e0059321, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35156836

RESUMO

With the increasing morbidity and mortality rates associated with multidrug-resistant bacteria, interest in bacteriophage therapy has been revived. However, bacterial resistance to phage infection threatens the usefulness of phage therapy, especially its inclusion in modern medicine. Multidrug-resistant Acinetobacter baumannii is a top-priority pathogen requiring urgent intervention and new therapeutic approaches, such as phage therapy. Here, we experimentally adapted A. baumannii WHG40004 to its lytic phage P21 and thereafter isolated a phage-resistant bacterial mutant, named Ev5-WHG. We then aimed to identify potential agents to aid phage killing of Ev5-WHG by analyzing its genome and that of the wild-type strain. The enriched Gene Ontology (GO) analysis based on genetic alterations in minor alleles and mutations showed that pathways such as zinc ion transport and cell membrane synthesis could play certain roles in phage resistance. Remarkably, the combination of zinc acetate and P21 showed increased bactericidal effect on Ev5-WHG. Significantly also, we showed that P21 completely prevented the growth of wild-type WHG40004 in the presence of antibiotics (meropenem and imipenem). The results from this study indicate that the analysis of phage resistance signatures during adaptation of bacteria to a lytic phage can inform the choice of agents to work cooperatively with phage to limit and/or reverse resistance. This approach could be important for guiding future successful phage therapy. IMPORTANCE Bacteriophages have proven very useful as alternative therapeutic agents in combating multidrug-resistant bacterial infections; however, bacterial resistance to phages threatens their use. In this study, we showed a new strategy of leveraging genetic signatures that accompany phage resistance in bacteria to predict agents that can be used with lytic phages to combat multidrug-resistant Acinetobacter baumannii. Significantly, this approach was helpful in suggesting the use of zinc acetate to reduce resistance in phage-resistant bacteria, as well as the use of phage with antibiotics meropenem and imipenem to prevent resistance in a wild-type strain of multidrug-resistant A. baumannii. The approach of this study will be helpful for improving the outcome of phage therapy and in overcoming antimicrobial resistance.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriófagos/genética , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Imipenem/farmacologia , Imipenem/uso terapêutico , Meropeném/farmacologia , Meropeném/uso terapêutico , Acetato de Zinco/farmacologia , Acetato de Zinco/uso terapêutico
17.
Opt Lett ; 47(18): 4608-4611, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107044

RESUMO

The magneto-optical resonance response of sodium atoms generated by a high-energy solid-state pulse Nd:YAG laser is studied in different external magnetic fields. We investigate the resonance fluorescence signal of sodium atoms in a simulated sea fog environment based on the laser-induced plasma (LIP) effect. By ionizing an NaCl solution spray to generate sodium atoms in an atmospheric environment, we build a Bell-Bloom magneto-optical resonance system under laboratory conditions. With the help of laser-induced breakdown spectroscopy (LIBS) and extinction spectrum, we obtain sodium atoms with a lifetime of 250 µs. A narrowband tunable continuous wave (CW) 589-nm laser tuned at the D2 line with a modulation frequency around the Larmor frequency is used as the pump beam to polarize sodium atoms in the test magnetic field. We find that the magneto-optical resonance signals vary with different external magnetic fields and the positions of the resonance signal are consistent with the theoretical values. An intrinsic magnetometric sensitivity of 620.4 pT in a 1-Hz bandwidth is achieved.

18.
Opt Lett ; 47(18): 4838-4841, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107103

RESUMO

Dissipative Kerr soliton microcombs are believed to be a promising technique to build a dual-comb source for applications including precision laser metrology, fast laser spectroscopy, and high-speed optical signal processing. In this Letter, we conduct a detailed experimental investigation on the phase coherence between two on-chip Kerr soliton microcombs, where the underlying physical and technical origins that lead to the mutual phase noise between microcombs are analyzed. Moreover, the techniques of 2-point locking and optical frequency division are explored to enhance the dual-microcomb phase coherence, and we demonstrate the best phase noise down to -50 dBc/Hz at 1-Hz offset, -90 dBc/Hz at 1-kHz offset, and -120 dBc/Hz at 1-MHz offset. Our study provides a basic reference for both fundamental studies and practical applications of Kerr soliton dual microcombs that entail high mutual phase coherence.

19.
Anal Bioanal Chem ; 414(11): 3483-3496, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35174409

RESUMO

Plasma samples were collected from 34 patients with advanced CRC and 92 healthy persons (control group), and the levels of 9 VNAs were measured using GC-MS. Untargeted metabolomics analysis was performed using LC-MS/MS. Partial least squares discriminant analysis (PLS-DA) and hierarchical cluster analysis were used to determine differential metabolites between the 2 groups. Receiver operating characteristic (ROC) curve analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed on the differential metabolites. It turned out that the detection rates of N-nitrosodimethylamine (NDMA) and N-nitrosopyrrolidine (NPYR) in patients with CRC were higher than in the control group (P < 0.05). N-nitrosomethylethylamine (NMEA) and N-nitrosodiphenylamine (NDPhA) were not detected in CRC patients. NDMA, N-nitrosodibutylamine (NDBA), N-nitrosopiperidine (NPIP), and NPYR were detected in male and female patients with CRC. There was no difference in VNAs exposure between the sexes of CRC patients. In the positive and negative ion mode, a total of 132 differential metabolites and 6 differential metabolic pathways were detected. Adenosine 5'-monophosphate, hypoxanthine, 11,12-epoxy-(5Z,8Z,11Z)-icosatrienoic acid, 16(R)-HETE, acetylcarnitine, and lysophosphatidic acid (LPA 20:5, LPA 20:4) were candidate biomarkers with higher predictive value. Hypoxanthine and xanthine metabolic pathways were associated with changes in VNAs in CRC patients. In summary, the effects of changes of VNAs in the plasma of CRC patients (especially NDMA and NPYR) on the progression of CRC should attract attention. Abnormalities of adenine and guanine and downstream hypoxanthine-xanthine metabolic pathways were closely related to changes of VNAs and metabolomics in CRC patients.


Assuntos
Neoplasias Colorretais , Nitrosaminas , Cromatografia Líquida , Feminino , Humanos , Hipoxantina , Masculino , Metabolômica , Nitrosaminas/análise , Espectrometria de Massas em Tandem , Xantina
20.
BMC Endocr Disord ; 22(1): 214, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028865

RESUMO

OBJECTIVE: The internal workings ofmachine learning algorithms are complex and considered as low-interpretation "black box" models, making it difficult for domain experts to understand and trust these complex models. The study uses metabolic syndrome (MetS) as the entry point to analyze and evaluate the application value of model interpretability methods in dealing with difficult interpretation of predictive models. METHODS: The study collects data from a chain of health examination institution in Urumqi from 2017 ~ 2019, and performs 39,134 remaining data after preprocessing such as deletion and filling. RFE is used for feature selection to reduce redundancy; MetS risk prediction models (logistic, random forest, XGBoost) are built based on a feature subset, and accuracy, sensitivity, specificity, Youden index, and AUROC value are used to evaluate the model classification performance; post-hoc model-agnostic interpretation methods (variable importance, LIME) are used to interpret the results of the predictive model. RESULTS: Eighteen physical examination indicators are screened out by RFE, which can effectively solve the problem of physical examination data redundancy. Random forest and XGBoost models have higher accuracy, sensitivity, specificity, Youden index, and AUROC values compared with logistic regression. XGBoost models have higher sensitivity, Youden index, and AUROC values compared with random forest. The study uses variable importance, LIME and PDP for global and local interpretation of the optimal MetS risk prediction model (XGBoost), and different interpretation methods have different insights into the interpretation of model results, which are more flexible in model selection and can visualize the process and reasons for the model to make decisions. The interpretable risk prediction model in this study can help to identify risk factors associated with MetS, and the results showed that in addition to the traditional risk factors such as overweight and obesity, hyperglycemia, hypertension, and dyslipidemia, MetS was also associated with other factors, including age, creatinine, uric acid, and alkaline phosphatase. CONCLUSION: The model interpretability methods are applied to the black box model, which can not only realize the flexibility of model application, but also make up for the uninterpretable defects of the model. Model interpretability methods can be used as a novel means of identifying variables that are more likely to be good predictors.


Assuntos
Síndrome Metabólica , Algoritmos , Humanos , Modelos Logísticos , Aprendizado de Máquina , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa