Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.066
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(19): e112999, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37622245

RESUMO

Cold stress is a major abiotic stress that adversely affects plant growth and crop productivity. The C-REPEAT BINDING FACTOR/DRE BINDING FACTOR 1 (CBF/DREB1) transcriptional regulatory cascade plays a key role in regulating cold acclimation and freezing tolerance in Arabidopsis (Arabidopsis thaliana). Here, we show that max (more axillary growth) mutants deficient in strigolactone biosynthesis and signaling display hypersensitivity to freezing stress. Exogenous application of GR245DS , a strigolactone analog, enhances freezing tolerance in wild-type plants and strigolactone-deficient mutants and promotes the cold-induced expression of CBF genes. Biochemical analysis showed that the transcription factor WRKY41 serves as a substrate for the F-box E3 ligase MAX2. WRKY41 directly binds to the W-box in the promoters of CBF genes and represses their expression, negatively regulating cold acclimation and freezing tolerance. MAX2 ubiquitinates WRKY41, thus marking it for cold-induced degradation and thereby alleviating the repression of CBF expression. In addition, SL-mediated degradation of SMXLs also contributes to enhanced plant freezing tolerance by promoting anthocyanin biosynthesis. Taken together, our study reveals the molecular mechanism underlying strigolactones promote the cold stress response in Arabidopsis.

2.
Plant Cell ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875155

RESUMO

Plants respond to cold stress at multiple levels, including increasing cytosolic calcium (Ca2+) influx and triggering the expression of cold-responsive genes. Here we show that the Ca2+-permeable channel CYCLIC NUCLEOTIDE GATED CHANNEL20 (CNGC20) positively regulates freezing tolerance in Arabidopsis (Arabidopsis thaliana) by mediating cold-induced Ca2+ influx. Moreover, we demonstrate that the leucine-rich repeat receptor-like kinase PLANT PEPTIDE CONTAINING SULFATED TYROSINE1 RECEPTOR (PSY1R) is activated by cold, phosphorylating and enhancing the activity of CNGC20. The psy1r mutant exhibited decreased cold-evoked Ca2+ influx and freezing tolerance. Conversely, COLD-RESPONSIVE PROTEIN KINASE1 (CRPK1), a protein kinase that negatively regulates cold signaling, phosphorylates and facilitates the degradation of CNGC20 under prolonged periods of cold treatment, thereby attenuating freezing tolerance. This study thus identifies PSY1R and CRPK1 kinases that regulate CNGC20 activity and stability, respectively, thereby antagonistically modulating freezing tolerance in plants.

3.
PLoS Pathog ; 20(5): e1012209, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709723

RESUMO

[This corrects the article DOI: 10.1371/journal.ppat.1003231.].

4.
Plant Cell ; 35(9): 3585-3603, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279565

RESUMO

Ubiquitination modulates protein turnover or activity depending on the number and location of attached ubiquitin (Ub) moieties. Proteins marked by a lysine 48 (K48)-linked polyubiquitin chain are usually targeted to the 26S proteasome for degradation; however, other polyubiquitin chains, such as those attached to K63, usually regulate other protein properties. Here, we show that 2 PLANT U-BOX E3 ligases, PUB25 and PUB26, facilitate both K48- and K63-linked ubiquitination of the transcriptional regulator INDUCER OF C-REPEAT BINDING FACTOR (CBF) EXPRESSION1 (ICE1) during different periods of cold stress in Arabidopsis (Arabidopsis thaliana), thus dynamically modulating ICE1 stability. Moreover, PUB25 and PUB26 attach both K48- and K63-linked Ub chains to MYB15 in response to cold stress. However, the ubiquitination patterns of ICE1 and MYB15 mediated by PUB25 and PUB26 differ, thus modulating their protein stability and abundance during different stages of cold stress. Furthermore, ICE1 interacts with and inhibits the DNA-binding activity of MYB15, resulting in an upregulation of CBF expression. This study unravels a mechanism by which PUB25 and PUB26 add different polyubiquitin chains to ICE1 and MYB15 to modulate their stability, thereby regulating the timing and degree of cold stress responses in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Resposta ao Choque Frio , Poliubiquitina/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação , Ubiquitina/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(30): e2216329120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37478163

RESUMO

To accomplish concerted physiological reactions, nature has diversified functions of a single hormone at at least two primary levels: 1) Different receptors recognize the same hormone, and 2) different cellular effectors couple to the same hormone-receptor pair [R.P. Xiao, Sci STKE 2001, re15 (2001); L. Hein, J. D. Altman, B.K. Kobilka, Nature 402, 181-184 (1999); Y. Daaka, L. M. Luttrell, R. J. Lefkowitz, Nature 390, 88-91 (1997)]. Not only these questions lie in the heart of hormone actions and receptor signaling but also dissecting mechanisms underlying these questions could offer therapeutic routes for refractory diseases, such as kidney injury (KI) or X-linked nephrogenic diabetes insipidus (NDI). Here, we identified that Gs-biased signaling, but not Gi activation downstream of EP4, showed beneficial effects for both KI and NDI treatments. Notably, by solving Cryo-electron microscope (cryo-EM) structures of EP3-Gi, EP4-Gs, and EP4-Gi in complex with endogenous prostaglandin E2 (PGE2)or two synthetic agonists and comparing with PGE2-EP2-Gs structures, we found that unique primary sequences of prostaglandin E2 receptor (EP) receptors and distinct conformational states of the EP4 ligand pocket govern the Gs/Gi transducer coupling selectivity through different structural propagation paths, especially via TM6 and TM7, to generate selective cytoplasmic structural features. In particular, the orientation of the PGE2 ω-chain and two distinct pockets encompassing agonist L902688 of EP4 were differentiated by their Gs/Gi coupling ability. Further, we identified common and distinct features of cytoplasmic side of EP receptors for Gs/Gi coupling and provide a structural basis for selective and biased agonist design of EP4 with therapeutic potential.


Assuntos
Dinoprostona , Transdução de Sinais , Dinoprostona/metabolismo , Transdução de Sinais/fisiologia , Receptores de Prostaglandina/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Hormônios , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo
6.
Plant J ; 118(1): 7-23, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38261530

RESUMO

The cytosol-facing outer membrane (OM) of organelles communicates with other cellular compartments to exchange proteins, metabolites, and signaling molecules. Cellular surveillance systems also target OM-resident proteins to control organellar homeostasis and ensure cell survival under stress. However, the OM proximity proteomes have never been mapped in plant cells since using traditional approaches to discover OM proteins and identify their dynamically interacting partners remains challenging. In this study, we developed an OM proximity labeling (OMPL) system using biotin ligase-mediated proximity biotinylation to identify the proximity proteins of the OMs of mitochondria, chloroplasts, and peroxisomes in living Arabidopsis (Arabidopsis thaliana) cells. Using this approach, we mapped the OM proximity proteome of these three organelles under normal conditions and examined the effects of the ultraviolet-B (UV-B) or high light (HL) stress on the abundances of OM proximity proteins. We demonstrate the power of this system with the discovery of cytosolic factors and OM receptor candidates potentially involved in local protein translation and translocation. The candidate proteins that are involved in mitochondrion-peroxisome, mitochondrion-chloroplast, or peroxisome-chloroplast contacts, and in the organellar quality control system are also proposed based on OMPL analysis. OMPL-generated OM proximity proteomes are valuable sources of candidates for functional validation and suggest directions for further investigation of important questions in cell biology.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Proteoma/metabolismo , Citosol/metabolismo , Biotinilação , Peroxissomos/metabolismo , Proteínas de Membrana/metabolismo
7.
J Virol ; 98(3): e0194423, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38421166

RESUMO

Since the first human infection reported in 2013, H7N9 avian influenza virus (AIV) has been regarded as a serious threat to human health. In this study, we sought to identify the virulence determinant of the H7N9 virus in mammalian hosts. By comparing the virulence of the SH/4664 H7N9 virus, a non-virulent H9N2 virus, and various H7N9-H9N2 hybrid viruses in infected mice, we first pinpointed PB2 as the primary viral factor accounting for the difference between H7N9 and H9N2 in mammalian virulence. We further analyzed the in vivo effects of individually mutating H7N9 PB2 residues different from the closely related H9N2 virus and consequently found residue 473, alongside the well-known residue 627, to be critical for the virulence of the H7N9 virus in mice and the activity of its reconstituted viral polymerase in mammalian cells. The importance of PB2-473 was further strengthened by studying reverse H7N9 substitutions in the H9N2 background. Finally, we surprisingly found that species-specific usage of ANP32A, a family member of host factors connecting with the PB2-627 polymorphism, mediates the contribution of PB2 473 residue to the mammalian adaption of AIV polymerase, as the attenuating effect of PB2 M473T on the viral polymerase activity and viral growth of the H7N9 virus could be efficiently complemented by co-expression of chicken ANP32A but not mouse ANP32A and ANP32B. Together, our studies uncovered the PB2 473 residue as a novel viral host range determinant of AIVs via species-specific co-opting of the ANP32 host factor to support viral polymerase activity.IMPORTANCEThe H7N9 avian influenza virus has been considered to have the potential to cause the next pandemic since the first case of human infection reported in 2013. In this study, we identified PB2 residue 473 as a new determinant of mouse virulence and mammalian adaptation of the viral polymerase of the H7N9 virus and its non-pathogenic H9N2 counterparts. We further demonstrated that the variation in PB2-473 is functionally linked to differential co-opting of the host ANP32A protein in supporting viral polymerase activity, which is analogous to the well-known PB2-627 polymorphism, albeit the two PB2 positions are spatially distant. By providing new mechanistic insight into the PB2-mediated host range determination of influenza A viruses, our study implicated the potential existence of multiple PB2-ANP32 interfaces that could be targets for developing new antivirals against the H7N9 virus as well as other mammalian-adapted influenza viruses.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , Proteínas Nucleares , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Subtipo H7N9 do Vírus da Influenza A/metabolismo , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Vírus da Influenza A Subtipo H9N2 , Influenza Humana/virologia , Mamíferos , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Virulência , Replicação Viral
8.
Circ Res ; 133(9): 739-757, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37750320

RESUMO

BACKGROUND: In developmental and pathological tissues, nascent vessel networks generated by angiogenesis require further pruning/regression to delete nonfunctional endothelial cells (ECs) by apoptosis and migration. Mechanisms underlying EC apoptosis during vessel pruning remain elusive. TMEM215 (transmembrane protein 215) is an endoplasmic reticulum-located, 2-pass transmembrane protein. We have previously demonstrated that TMEM215 knockdown in ECs leads to cell death, but its physiological function and mechanism are unclear. METHODS: We characterized the role and mechanism of TMEM215 in EC apoptosis using human umbilical vein endothelial cells by identifying its interacting proteins with immunoprecipitation-mass spectrometry. The physiological function of TMEM215 in ECs was assessed by establishing a conditional knockout mouse strain. The role of TMEM215 in pathological angiogenesis was evaluated by tumor and choroidal neovascularization models. We also tried to evaluate its translational value by delivering a Tmem215 small interfering RNA (siRNA) using nanoparticles in vivo. RESULTS: TMEM215 knockdown in ECs induced apoptotic cell death. We identified the chaperone BiP as a binding partner of TMEM215, and TMEM215 forms a complex with and facilitates the interaction of BiP (binding immunoglobin protein) with the BH (BCL-2 [B-cell lymphoma 2] homology) 3-only proapoptotic protein BIK (BCL-2 interacting killer). TMEM215 knockdown triggered apoptosis in a BIK-dependent way and was abrogated by BCL-2. Notably, TMEM215 knockdown increased the number and diminished the distance of mitochondria-associated endoplasmic reticulum membranes and increased mitochondrial calcium influx. Inhibiting mitochondrial calcium influx by blocking the IP3R (inositol 1,4,5-trisphosphate receptor) or MCU (mitochondrial calcium uniporter) abrogated TMEM215 knockdown-induced apoptosis. TMEM215 expression in ECs was induced by physiological laminar shear stress via EZH2 downregulation. In EC-specific Tmem215 knockout mice, induced Tmem215 depletion impaired the regression of retinal vasculature characterized by reduced vessel density, increased empty basement membrane sleeves, and increased EC apoptosis. Moreover, EC-specific Tmem215 ablation inhibited tumor growth with disrupted vasculature. However, Tmem215 ablation in adult mice attenuated lung metastasis, consistent with reduced Vcam1 expression. Administration of nanoparticles carrying Tmem215 siRNA also inhibited tumor growth and choroidal neovascularization injury. CONCLUSIONS: TMEM215, which is induced by blood flow-derived shear stress via downregulating EZH2, protects ECs from BIK-triggered mitochondrial apoptosis mediated by calcium influx through mitochondria-associated ER membranes during vessel pruning, thus providing a novel target for antiangiogenic therapy.

9.
J Immunol ; 211(9): 1367-1375, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695685

RESUMO

A better understanding of the regulatory mechanisms governing the development of memory CD8+ T cells could provide instructive insights into vaccination strategies and T cell-based immunotherapies. In this article, we showed that CD160 surface protein is required for CD8+ T cell memory formation. In the response to acute lymphocytic choriomeningitis virus infection in a mouse model, CD160 ablation resulted in the failure of the development of all three memory CD8+ T cell subsets (central, effective, and tissue-resident memory), concomitant with a skewed differentiation into short-lived effector T cells. Such memory-related defect was manifested by a diminished protection from viral rechallenge. Mechanistically, CD160 deficiency led to downregulation of 4-1BB in activated CD8+ T cells, which contributes to the impaired cell survival and decreased respiratory capacity. The nexus between CD160 and 4-1BB was substantiated by the observation that ectopic introduction of 4-1BB was able to largely complement the loss of CD160 in memory CD8+ T cell development. Collectively, our studies discovered that CD160, once thought to be a coinhibitor of T cell signaling, is an essential promoter of memory CD8+ T cell development via activation of the costimulatory molecule 4-1BB.

10.
Genomics ; 116(5): 110884, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878835

RESUMO

Cynanchum thesioides, a xerophytic species utilized both as a medicinal herb and a food source, plays a significant role in arid and desert ecosystem management. Its inflorescence is an umbellate cyme, each carrying nearly a thousand flowers; however, its fruiting rate remains remarkably low. The normal development of the anther is a necessary prerequisite for plants to produce seeds. However, our understanding of the anther development process in Cynanchum thesioides remains limited. To better understand the pollen development process in Cynanchum thesioides, the stages of pollen development were determined through paraffin sectioning, and observations were made on the distribution characteristics of polysaccharides and lipid droplets in the pollen development of Cynanchum thesioides using Periodic Acid-Schiff stain (PAS) and 0.5% Sudan Black B tissue staining. Concurrently, the gene expression patterns and metabolite profiles were delineated across various developmental stages of Cynanchum thesioides anthers (T1: microspore stage, T2: tetrad stage, T3: mononuclear stage, and T4: maturation stage). The findings revealed that Cynanchum thesioides pollen is in an aggregate form. Polysaccharides gradually accumulate during maturation and lipid droplets form a surrounding membrane, thereby preventing pollen dispersion. Furthermore, transcriptomic and metabolomic analyses across distinct developmental phases uncovered a plethora of differentially expressed genes and metabolites associated with the flavonoid biosynthesis pathway. Flavonoid levels exhibited dynamic changes concurrent with anther development, aligning with the gene regulatory patterns of the corresponding biosynthetic pathways. The study identified 63 differentially accumulated flavonoid compounds and 21 differentially expressed genes associated with flavonoid biosynthesis. Weighted gene co-expression network analysis revealed six MYB and ten bHLH transcription factors as key candidates involved in flavonoid biosynthesis, with CtbHLH (Cluster-6587.1050) and CtMYB (Cluster-6587.31743) specifically regulating structural genes within the pathway. These findings underscore the pivotal role of flavonoid biosynthesis in anther development of Cynanchum thesioides. In conclusion, this research offers a comprehensive insight into the anther development process in Cynanchum thesioides.

11.
Trends Biochem Sci ; 45(12): 1065-1079, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32893104

RESUMO

It has been demonstrated that two Golgi stacking proteins, GRASP55 and GRASP65, self-interact to form trans-oligomers that tether adjacent Golgi membranes into stacks and ribbons in mammalian cells. This ensures proper functioning of the Golgi apparatus in protein trafficking and processing. More recently, GRASP proteins have drawn extensive attention from researchers due to their diverse and essential roles in and out of the Golgi in different organisms. In this review, we summarize their established roles in Golgi structure formation and function under physiological conditions. We then highlight the emerging and divergent roles for individual GRASP proteins, focusing on GRASP65 in cell migration and apoptosis and GRASP55 in unconventional protein secretion and autophagy under stress or pathological conditions.


Assuntos
Complexo de Golgi , Proteínas da Matriz do Complexo de Golgi , Animais , Movimento Celular/fisiologia , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Transporte Proteico
12.
J Cell Mol Med ; 28(10): e18409, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769917

RESUMO

Farnesoid X receptor (FXR), a ligand-activated transcription factor, plays an important role in maintaining water homeostasis by up-regulating aquaporin 2 (AQP2) expression in renal medullary collecting ducts; however, its role in the survival of renal medullary interstitial cells (RMICs) under hypertonic conditions remains unclear. We cultured primary mouse RMICs and found that the FXR was expressed constitutively in RMICs, and that its expression was significantly up-regulated at both mRNA and protein levels by hypertonic stress. Using luciferase and ChIP assays, we found a potential binding site of nuclear factor kappa-B (NF-κB) located in the FXR gene promoter which can be bound and activated by NF-κB. Moreover, hypertonic stress-induced cell death in RMICs was significantly attenuated by FXR activation but worsened by FXR inhibition. Furthermore, FXR increased the expression and nuclear translocation of hypertonicity-induced tonicity-responsive enhance-binding protein (TonEBP), the expressions of its downstream target gene sodium myo-inositol transporter (SMIT), and heat shock protein 70 (HSP70). The present study demonstrates that the NF-κB/FXR/TonEBP pathway protects RMICs against hypertonic stress.


Assuntos
Medula Renal , NF-kappa B , Transdução de Sinais , Animais , NF-kappa B/metabolismo , Camundongos , Medula Renal/metabolismo , Medula Renal/citologia , Pressão Osmótica , Aquaporina 2/metabolismo , Aquaporina 2/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Masculino , Camundongos Endogâmicos C57BL , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Regiões Promotoras Genéticas , Células Cultivadas , Regulação da Expressão Gênica , Simportadores/metabolismo , Simportadores/genética , Receptores Citoplasmáticos e Nucleares
13.
Plant J ; 115(1): 155-174, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37025008

RESUMO

Salicylic acid (SA) plays important roles in different aspects of plant development, including root growth, where auxin is also a major player by means of its asymmetric distribution. However, the mechanism underlying the effect of SA on the development of rice roots remains poorly understood. Here, we show that SA inhibits rice root growth by interfering with auxin transport associated with the OsPIN3t- and clathrin-mediated gene regulatory network (GRN). SA inhibits root growth as well as Brefeldin A-sensitive trafficking through a non-canonical SA signaling mechanism. Transcriptome analysis of rice seedlings treated with SA revealed that the OsPIN3t auxin transporter is at the center of a GRN involving the coat protein clathrin. The root growth and endocytic trafficking in both the pin3t and clathrin heavy chain mutants were SA insensitivity. SA inhibitory effect on the endocytosis of OsPIN3t was dependent on clathrin; however, the root growth and endocytic trafficking mediated by tyrphostin A23 (TyrA23) were independent of the pin3t mutant under SA treatment. These data reveal that SA affects rice root growth through the convergence of transcriptional and non-SA signaling mechanisms involving OsPIN3t-mediated auxin transport and clathrin-mediated trafficking as key components.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Clatrina/metabolismo , Proteínas de Arabidopsis/metabolismo , Oryza/metabolismo , Arabidopsis/genética , Ácido Salicílico/metabolismo , Raízes de Plantas/metabolismo , Transporte Proteico , Ácidos Indolacéticos/metabolismo
14.
Am J Physiol Renal Physiol ; 327(1): F146-F157, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38779753

RESUMO

17ß-Hydroxysteroid dehydrogenase-13 (HSD17B13), a newly identified lipid droplet-associated protein, plays an important role in the development of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Emerging evidence demonstrates that NASH is an independent risk factor for chronic kidney disease, which is frequently accompanied by renal lipid accumulation. In addition, the HSD17B13 rs72613567 variant is associated with lower levels of albuminuria in patients with biopsy-proven NAFLD. At present, the role of HSD17B13 in lipid accumulation in the kidney is unclear. This study utilized bioinformatic and immunostaining approaches to examine the expression and localization of HSD17B13 along the mouse urinary tract. We found that HSD17B13 is constitutively expressed in the kidney, ureter, and urinary bladder. Our findings reveal for the first time, to our knowledge, the precise localization of HSD17B13 in the mouse urinary system, providing a basis for further studying the pathogenesis of HSD17B13 in various renal and urological diseases.NEW & NOTEWORTHY HSD17B13, a lipid droplet-associated protein, is crucial in nonalcoholic fatty liver disease (NAFLD) development. NAFLD also independently raises chronic kidney disease (CKD) risk, often with renal lipid buildup. However, HSD17B13's role in CKD-related lipid accumulation is unclear. This study makes the first effort to examine HSD17B13 expression and localization along the urinary system, providing a basis for exploring its physiological and pathophysiological roles in the kidney and urinary tract.


Assuntos
17-Hidroxiesteroide Desidrogenases , Camundongos Endogâmicos C57BL , Animais , Masculino , Camundongos , 17-Hidroxiesteroide Desidrogenases/genética , 17-Hidroxiesteroide Desidrogenases/metabolismo , Rim/metabolismo , Rim/patologia , Sistema Urinário/metabolismo , Sistema Urinário/patologia
15.
Clin Immunol ; 265: 110297, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909971

RESUMO

Activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL) is an aggressive lymphoma characterized by constitutive NF-κB activation, but whether miR-17∼92 contributes to this activation remains unclear. Herein, we sought to evaluate the role of miR-17∼92 in the process of NF-κB activation in ABC-DLBCL. We found that the expression of miR-17∼92 primary transcript was positively correlated with NF-κB activity, miR-17∼92 activated the NF-κB signaling in ABC-DLBCL, and its over-expression promoted ABC-DLBCL cell growth, accelerated cell G1 to S phase transition and enhanced cell resistance to NF-κB inhibitor. Importantly, miR-17∼92 promoted NF-κB activation through directly targeting multiple ubiquitin-editing regulators to lead to increase the K63-linked polyubiquitination and decrease the K48-linked polyubiquitination of RIP1 complex in ABC-DLBCL. We further found that miR-17∼92 selectively activated IκB-α and NF-κB p65 but not NF-κB p52/p100, and high miR-17∼92 expression was also associated with poorer outcome in ABC-DLBCL patients. Overall, our results showed that miR-17∼92 selectively activated the canonical NF-κB signaling via targeting ubiquitin-editing regulators to lead to constitutively NF-κB activation and poorer outcome in ABC-DLBCL. These findings uncovered an innovative function of miR-17∼92 and previously unappreciated regulatory mechanism of NF-κB activation in ABC-DLBCL. Targeting miR-17∼92 may thus provide a novel bio-therapeutic strategy for ABC-DLBCL patients.

16.
Br J Haematol ; 204(5): 1771-1779, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447995

RESUMO

Primary gastrointestinal follicular lymphoma (PGI-FL) is a rare extra-nodal lymphoma. Its epidemiology and prognosis remain unclear. We performed a retrospective analysis of eligible patients with 1648 PGI-FL and 34 892 nodal FL (N-FL) in the Surveillance, Epidemiology and End Results (SEER) database. The age-adjusted average annual incidence of PGI-FL was 0.111/100000. The median overall survival (OS) for PGI-FL and N-FL patients was 207 and 165 months respectively. The 5-year diffuse large B-cell lymphoma (DLBCL) transformation rates were 2.1% and 2.6% respectively. Age, sex, grade, Ann Arbor stage, primary site and radiation were independent prognostic factors (p < 0.05). Nomograms were constructed to predict 1-, 5- and 10-year OS and disease-specific survival (DSS). The receiver operating characteristic curves and calibration plots showed the established nomograms had robust and accurate performance. Patients were classified into three risk groups according to nomogram score. In conclusion, the incidence of PGI-FL has increased over the past 40 years, and PGI-FL has a better prognosis and a lower DLBCL transformation rate than N-FL. The nomograms were developed and validated as an individualized tool to predict survival. Patients were divided into three risk groups to assist clinicians in identifying high-risk patients and choosing the optimal individualized treatments.


Assuntos
Neoplasias Gastrointestinais , Linfoma Folicular , Programa de SEER , Humanos , Linfoma Folicular/mortalidade , Linfoma Folicular/epidemiologia , Linfoma Folicular/terapia , Linfoma Folicular/diagnóstico , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Neoplasias Gastrointestinais/epidemiologia , Neoplasias Gastrointestinais/mortalidade , Neoplasias Gastrointestinais/diagnóstico , Neoplasias Gastrointestinais/terapia , Adulto , Estudos Retrospectivos , Prognóstico , Idoso de 80 Anos ou mais , Nomogramas , Incidência , Linfoma Difuso de Grandes Células B/epidemiologia , Linfoma Difuso de Grandes Células B/mortalidade , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/terapia , Adolescente , Adulto Jovem
17.
Gastroenterology ; 165(6): 1430-1442.e14, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37625498

RESUMO

BACKGROUND & AIMS: The benefit of radiotherapy for rectal cancer is based largely on a balance between a decrease in local recurrence and an increase in bowel dysfunction. Predicting postoperative disability is helpful for recovery plans and early intervention. We aimed to develop and validate a risk model to improve the prediction of major bowel dysfunction after restorative rectal cancer resection with neoadjuvant radiotherapy using perioperative features. METHODS: Eligible patients more than 1 year after restorative resection following radiotherapy were invited to complete the low anterior resection syndrome (LARS) score at 3 national hospitals in China. Clinical characteristics and imaging parameters were assessed with machine learning algorithms. The post-radiotherapy LARS prediction model (PORTLARS) was constructed by means of logistic regression on the basis of key factors with proportional weighs. The accuracy of the model for major LARS prediction was internally and externally validated. RESULTS: A total of 868 patients reported a mean LARS score of 28.4 after an average time of 4.7 years since surgery. Key predictors for major LARS included the length of distal rectum, anastomotic leakage, proximal colon of neorectum, and pathologic nodal stage. PORTLARS had a favorable area under the curve for predicting major LARS in the internal dataset (0.835; 95% CI, 0.800-0.870, n = 521) and external dataset (0.884; 95% CI, 0.848-0.921, n = 347). The model achieved both sensitivity and specificity >0.83 in the external validation. In addition, PORTLARS outperformed the preoperative LARS score for prediction of major events. CONCLUSIONS: PORTLARS could predict major bowel dysfunction after rectal cancer resection following radiotherapy with high accuracy and robustness. It may serve as a useful tool to identify patients who need additional support for long-term dysfunction in the early stage. CLINICALTRIALS: gov, number NCT05129215.


Assuntos
Gastroenteropatias , Enteropatias , Neoplasias Retais , Humanos , Reto/diagnóstico por imagem , Reto/cirurgia , Neoplasias Retais/radioterapia , Neoplasias Retais/cirurgia , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Síndrome de Ressecção Anterior Baixa
18.
Microcirculation ; : e12876, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005221

RESUMO

OBJECTIVE: Abnormal tumor vascular network contributes to aberrant blood perfusion and reduced oxygenation in tumors, which lead to poor efficacy of chemotherapy and radiotherapy. We aimed to explore the effects of the tumor-derived exosomes (TDEs) and C188-9 (a small molecule inhibitor of signal transducer and activator of transcription 3, STAT3) on tumor microvascular hemodynamics and determine which blood flow oscillations for various frequency intervals are responsible for these changes. METHODS: Microvascular hemodynamics parameters were recorded using a PeriFlux 6000 EPOS system in tumor surface in a nude mouse subcutaneous xenograft model. Oscillations of laser Doppler flowmetry (LDF) signal were investigated by wavelet transform analysis. RESULTS: TDEs facilitated tumor growth at least partially was associated with increasing blood flow in smaller vessels with lower speed and decreasing the blood flow at larger vessels with higher speed. Lower oxyhemoglobin saturation (SO2) on tumor surface was aggravated by TDEs, and C188-9 treatment significantly alleviated this decrease. Wavelet transform spectral analysis revealed that TDEs increased the amplitude of oscillations in four frequency intervals related to endothelial (NO-dependent and -independent), myogenic and neurogenic activities, and C188-9 had no effect on this increase. CONCLUSIONS: TDEs facilitated tumor growth partially was associated with increasing blood flow in distributing vessels, reducing blood perfusion in larger vessels, and lowering SO2 on tumor surface. Enhanced vascular smooth muscle, endothelial and neurogenic activities occurred in tumor superficial zone.

19.
Radiology ; 310(3): e232605, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38530176

RESUMO

Background Detection of extranodal extension (ENE) at pathology is a poor prognostic indicator for rectal cancer, but whether ENE can be identified at pretreatment MRI is, to the knowledge of the authors, unknown. Purpose To evaluate the performance of pretreatment MRI in detecting ENE using a matched pathologic reference standard and to assess its prognostic value in patients with rectal cancer. Materials and Methods This single-center study included a prospective development data set consisting of participants with rectal adenocarcinoma who underwent pretreatment MRI and radical surgery (December 2021 to January 2023). MRI characteristics were identified by their association with ENE-positive nodes (χ2 test and multivariable logistic regression) and the performance of these MRI features was assessed (area under the receiver operating characteristic curve [AUC]). Interobserver agreement was assessed by Cohen κ coefficient. The prognostic value of ENE detected with MRI for predicting 3-year disease-free survival was assessed by Cox regression analysis in a retrospective independent validation cohort of patients with locally advanced rectal cancer (December 2019 to July 2020). Results The development data set included 147 participants (mean age, 62 years ± 11 [SD]; 87 male participants). The retrospective cohort included 110 patients (mean age, 60 years ± 9; 79 male participants). Presence of vessel interruption and fusion (both P < .001), heterogeneous internal structure, and the broken-ring and tail signs (odds ratio range, 4.10-23.20; P value range, <.001 to .002) were predictors of ENE at MRI, and together achieved an AUC of 0.91 (95% CI: 0.88, 0.93) in detecting ENE. Interobserver agreement was moderate for the presence of vessel interruption and fusion (κ = 0.46 for both) and substantial for others (κ = 0.61-0.67). The presence of ENE at pretreatment MRI was independently associated with worse 3-year disease-free survival (hazard ratio, 3.00; P = .02). Conclusion ENE can be detected at pretreatment MRI, and its presence was associated with worse prognosis for patients with rectal cancer. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Eberhardt in this issue.


Assuntos
Segunda Neoplasia Primária , Neoplasias Retais , Humanos , Masculino , Pessoa de Meia-Idade , Extensão Extranodal , Prognóstico , Estudos Prospectivos , Estudos Retrospectivos , Neoplasias Retais/diagnóstico por imagem , Imageamento por Ressonância Magnética
20.
Small ; 20(17): e2305363, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38105346

RESUMO

To fabricate label-free and rapid-resulting semiconducting biosensor devices incorporating graphene, it is pertinent to directly grow uniform graphene films on technologically important dielectric and semiconducting substrates. However, it has long been intuitively believed that the nonideal disordered structures formed during direct growth, and the resulted inferior electrical properties will inevitably lead to deteriorated sensing performance. Here, graphene biosensor chips are constructed based on direct plasma-enhanced chemical vapor deposition (PECVD) grown graphene on a 4-inch silicon wafer with excellent film uniformity and high yield. To surprise, optimal operations of graphene biosensors permit ultrasensitive detection of SARS-CoV-2 virus nucleocapsid protein with dilutions down to sub-femtomolar concentrations. Such impressive limit of detection (LOD) is comparable to or even outperforms that of the state-of-the-art biosensor devices based on high-quality graphene. Further noise spectral characterizations and analysis confirms that the LOD is limited by molecular diffusion and/or known interference signals such as drift and instability of the sensors, rather than the electrical merits of the graphene devices along. Hence, result sheds light on processing directly grown PECVD graphene into high-performance sensor devices with important economic benefits and social significance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa