Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(8): e2205714, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36509641

RESUMO

Low removal efficiency, long treatment time, and high energy consumption hinder advanced and eco-friendly use of traditional adsorbents and separation membranes. Here, a class of amphiphilically modified 2D porous polymeric nanosandwich is designed and is subsequently assembled into adsorptive membranes. The 2D nanosandwich is gifted with high porosity and excellent pore accessibility, demonstrating rapid adsorption kinetics. The as-assembled membrane integrates unimpeded interlayer channels and well-developed, amphiphilic, and highly accessible intralayer nanopores, leading to ultrafast water permeation (1.2 × 104  L m-2  h-1  bar-1 ), high removal efficiency, and easy regeneration. The family of the membrane can be expanded by changing amphiphilic functional groups, further providing treatment of a wide-spectrum of pollutants, including aromatic compounds, pesticide, and pharmaceuticals. It is believed that the novel amphiphilically modified adsorptive membrane offers a distinct water treatment strategy with ultrahigh water permeation and efficient pollutants removal performances, and provides a multiple-in-one solution to the detection and elimination of pollutants.

2.
Small ; 19(50): e2205078, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36587991

RESUMO

Three-dimensional (3D) bioprinting is driving significant innovations in biomedicine over recent years. Under certain scenarios such as in intraoperative bioprinting, the bioinks used should exhibit not only cyto/biocompatibility but also adhesiveness in wet conditions. Herein, an adhesive bioink composed of gelatin methacryloyl, gelatin, methacrylated hyaluronic acid, and skin secretion of Andrias davidianus is designed. The bioink exhibits favorable cohesion to allow faithful extrusion bioprinting in wet conditions, while simultaneously showing good adhesion to a variety of surfaces of different chemical properties, possibly achieved through the diverse bonds presented in the bioink formulation. As such, this bioink is able to fabricate sophisticated planar and volumetric constructs using extrusion bioprinting, where the dexterity is further enhanced using ergonomic handheld bioprinters to realize in situ bioprinting. In vitro experiments reveal that cells maintain high viability; further in vivo studies demonstrate good integration and immediate injury sealing. The characteristics of the bioink indicate its potential widespread utility in extrusion bioprinting and will likely broaden the applications of bioprinting toward situations such as in situ dressing and minimally invasive tissue regeneration.


Assuntos
Bioimpressão , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Adesivos , Gelatina/química , Pele , Cicatrização , Impressão Tridimensional , Hidrogéis/química , Bioimpressão/métodos
3.
Proc Natl Acad Sci U S A ; 117(46): 28667-28677, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139557

RESUMO

The treatment of diabetic ulcer (DU) remains a major clinical challenge due to the complex wound-healing milieu that features chronic wounds, impaired angiogenesis, persistent pain, bacterial infection, and exacerbated inflammation. A strategy that effectively targets all these issues has proven elusive. Herein, we use a smart black phosphorus (BP)-based gel with the characteristics of rapid formation and near-infrared light (NIR) responsiveness to address these problems. The in situ sprayed BP-based gel could act as 1) a temporary, biomimetic "skin" to temporarily shield the tissue from the external environment and accelerate chronic wound healing by promoting the proliferation of endothelial cells, vascularization, and angiogenesis and 2) a drug "reservoir" to store therapeutic BP and pain-relieving lidocaine hydrochloride (Lid). Within several minutes of NIR laser irradiation, the BP-based gel generates local heat to accelerate microcirculatory blood flow, mediate the release of loaded Lid for "on-demand" pain relief, eliminate bacteria, and reduce inflammation. Therefore, our study not only introduces a concept of in situ sprayed, NIR-responsive pain relief gel targeting the challenging wound-healing milieu in diabetes but also provides a proof-of-concept application of BP-based materials in DU treatment.


Assuntos
Pé Diabético/terapia , Fósforo/administração & dosagem , Terapia Fototérmica , Materiais Inteligentes/administração & dosagem , Cicatrização/efeitos dos fármacos , Anestésicos Locais/administração & dosagem , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/efeitos dos fármacos , Fibrinogênio/administração & dosagem , Géis , Células Endoteliais da Veia Umbilical Humana , Humanos , Lidocaína/administração & dosagem , Masculino , Camundongos Endogâmicos BALB C , Neovascularização Fisiológica/efeitos dos fármacos , Trombina/administração & dosagem
4.
Chem Soc Rev ; 51(4): 1377-1414, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35043817

RESUMO

Porous organic polymers (POPs) have emerged as a new class of multifunctional porous materials and received tremendous research attention from both academia and industry. Most POPs are constructed from versatile organic small molecules with diverse linkages through strong covalent bonds. Owing to their high surface area and porosity, low density, high stability, tunable pores and skeletons, and ease of functionalization, POPs have been extensively studied for gas storage and separation, heterogeneous catalysis, biomedicine, sensing, optoelectronics, energy storage and conversion, etc. Particularly, POPs are excellent platforms with exciting opportunities for biomedical applications. Consequently, considerable efforts have been devoted to preparing POPs with an emphasis on their biomedical applications. In this review, first, we briefly describe the different subclasses of POPs and their synthetic strategies and functionalization approaches. Then, we highlight the state-of-the-art progress in POPs for a variety of biomedical applications such as drug delivery, biomacromolecule immobilization, photodynamic and photothermal therapy, biosensing, bioimaging, antibacterial, bioseparation, etc. Finally, we provide our thoughts on the fundamental challenges and future directions of this emerging field.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros , Catálise , Polímeros/química , Porosidade
5.
Chem Soc Rev ; 51(14): 6126-6176, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35792076

RESUMO

Against the backdrop of increased public health awareness, inorganic nanomaterials have been widely explored as promising nanoagents for various kinds of biomedical applications. Layered double hydroxides (LDHs), with versatile physicochemical advantages including excellent biocompatibility, pH-sensitive biodegradability, highly tunable chemical composition and structure, and ease of composite formation with other materials, have shown great promise in biomedical applications. In this review, we comprehensively summarize the recent advances in LDH-based nanomaterials for biomedical applications. Firstly, the material categories and advantages of LDH-based nanomaterials are discussed. The preparation and surface modification of LDH-based nanomaterials, including pristine LDHs, LDH-based nanocomposites and LDH-derived nanomaterials, are then described. Thereafter, we systematically describe the great potential of LDHs in biomedical applications including drug/gene delivery, bioimaging diagnosis, cancer therapy, biosensing, tissue engineering, and anti-bacteria. Finally, on the basis of the current state of the art, we conclude with insights on the remaining challenges and future prospects in this rapidly emerging field.


Assuntos
Hidróxidos , Nanocompostos , Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Hidróxidos/química , Nanocompostos/química , Engenharia Tecidual
6.
Nano Lett ; 22(13): 5127-5136, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35700100

RESUMO

Carbon dots (CDs) have aroused widespread interest in the construction of room-temperature phosphorescent (RTP) materials. However, it is a great challenge to obtain simultaneous multicolor long-wavelength RTP emission and excellent stability in CD-based RTP materials. Herein, a novel and universal "CDs-in-YOHF" strategy is proposed to generate multicolor and long-wavelength RTP by confining various CDs in the Y(OH)xF3-x (YOHF) matrix. The mechanism of the triplet emission of CDs is related to the space confinement, the formation of hydrogen bonds and C-F bonds, and the electron-withdrawing fluorine atoms. Remarkably, the RTP lifetime of orange-emissive CDs-o@YOHF is the longest among the reported single-CD-matrix composites for emission above 570 nm. Furthermore, CDs-o@YOHF exhibited higher RTP performance at long wavelength in comparison to CDs-o@matrix (matrix = PVA, PU, urea, silica). The resulting CDs@YOHF shows excellent photostability, thermostability, chemical stability, and temporal stability, which is rather favorable for information security, especially in a complex environment.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Corantes Fluorescentes/química , Fluoretos , Pontos Quânticos/química , Temperatura
7.
Small ; 18(36): e2106000, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34854571

RESUMO

Imaging-guided photothermal therapy (PTT)/photodynamic therapy (PDT) for cancer treatment are beneficial for precise localization of the malignant lesions and combination of multiple cell killing mechanisms in eradicating stubborn thermal-resistant cancer cells. However, overcoming the adverse impact of tumor hypoxia on PDT efficacy remains a challenge. Here, carrier-free nano-theranostic agents are developed (AIBME@IR780-APM NPs) for magnetic resonance imaging (MRI)-guided synergistic PTT/thermodynamic therapy (TDT). Two IR780 derivatives are synthesized as the subject of nanomedicine to confer the advantages for the nanomedicine, which are by feat of amphiphilic IR780-PEG to enhance the sterical stability and reduce the risk from reticuloendothelial system uptake, and IR780-ATU to chelate Mn2+ for T1 -weighted MRI. Dimethyl 2,2'-azobis(2-methylpropionate) (AIBME), acting as thermally decomposable radical initiators, are further introduced into nanosystems with the purpose of generating highly cytotoxic alkyl radicals upon PTT launched by IR780 under 808 nm laser irradiation. Therefore, the sequentially generated heat and alkyl radicals synergistically induce cell death via synergistic PTT/TDT, ignoring tumor hypoxia. Moreover, these carrier-free nano-theranostic agents present satisfactory biocompatibility, which could be employed as a powerful weapon to hit hypoxic tumors via MRI-guided oxygen-independent PTT and photonic TDT.


Assuntos
Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Oxigênio/uso terapêutico , Fotoquimioterapia/métodos , Fototerapia/métodos , Nanomedicina Teranóstica/métodos
8.
J Nanobiotechnology ; 20(1): 322, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836190

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disorder without effective therapy and lack diagnosis strategy for preclinical AD patients. There is an urgent need for development of both early diagnosis and therapeutic intervention of AD. RESULTS: Herein, we developed a nanotheranostics platform consisting of Curcumin (Cur), an anti-inflammatory molecule, and superparamagnetic iron oxide (SPIO) nanoparticles encapsulated by diblock 1,2-dio-leoyl-sn-glycero-3-phosphoethanolamine-n-[poly(ethylene glycol)] (DSPE-PEG) that are modified with CRT and QSH peptides on its surface. Furthermore, we demonstrated that this multifunctional nanomaterial efficiently reduced ß-amyloid plaque burden specifically in APP/PS1 transgenic mice, with the process noninvasively detected by magnetic resonance imaging (MRI) and the two-dimensional MRI images were computed into three-dimension (3D) plot. Our data demonstrated highly sensitive in vivo detection of ß-amyloid plaques which more closely revealed real deposition of Aß than previously reported and we quantified the volumes of plaques for the first time based on 3D plot. In addition, memory deficits of the mice were significantly rescued, probably related to inhibition of NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasomes. CONCLUSIONS: Gathered data demonstrated that this theranostic platform may have both early diagnostic and therapeutic potential in AD.


Assuntos
Doença de Alzheimer , Curcumina , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/química , Animais , Cognição , Curcumina/química , Curcumina/farmacologia , Curcumina/uso terapêutico , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Camundongos , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Placa Amiloide/diagnóstico por imagem , Placa Amiloide/tratamento farmacológico , Nanomedicina Teranóstica
9.
Nano Lett ; 21(5): 2156-2164, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33596083

RESUMO

It is quite challenging to prepare subnanometer porous materials from traditional porous precursors, and use of supramolecules as carbon sources was seldom reported due to the complex preparation and purification processes. We explore a facile one-pot method to fabricate supramolecular coordination compounds as carbon sources. The resultant CB[6]-derived carbons (CBC) have a high N content of 7.0-22.0%, surface area of 552-861 m2 g-1, and subnano/mesopores. The CBC electrodes have a narrow size distribution at 5.9 Å, and the supercapacitor exhibits an energy density of 117.1 Wh kg-1 and a potential window of over 3.8 V in a two-electrode system in the ionic liquid (MMIMBF4) electrolyte with appropriate cationic (5.8 Å) and anionic (2.3 Å) diameter. This work presents the facile fabrication of novel supermolecule cucurbituril subnanoporous carbon materials and the smart design of "pores and balls" for high-performance energy storage systems.

10.
Angew Chem Int Ed Engl ; 61(17): e202110832, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35142018

RESUMO

Despite extensive efforts to realize effective photodynamic therapy (PDT), there is still a lack of therapeutic approaches concisely structured to mitigate the major obstacles of PDT in clinical applications. Herein, we report a molecular strategy exploiting ascorbate chemistry to enhance the efficacy of PDT in cancer cells overexpressing glucose transporter 1 (GLUT1). AA-EtNBS, a 5-O-substituted ascorbate-photosensitizer (PS) conjugate, undergoes a reversible structural conversion of the ascorbate moiety in the presence of reactive oxygen species (ROS) and glutathione (GSH), thereby promoting its uptake in GLUT1-overexpressed KM12C colon cancer cells and perturbing tumor redox homeostasis, respectively. Due to the unique pro-oxidant role of ascorbate in tumor environments, AA-EtNBS effectively sensitized KM12C cancer cells prior to PS-mediated generation of superoxide radicals under near-infrared (NIR) illumination. AA-EtNBS successfully exhibited GLUT1-targeted synergistic therapeutic efficacy during PDT both in vitro and in vivo. Therefore, this study outlines a promising strategy employing ascorbate both as a targeting unit for GLUT1-overexpressed cancer cells and redox homeostasis destruction agent, thereby enhancing therapeutic responses towards anticancer treatment when used in conjunction with conventional PDT.


Assuntos
Neoplasias , Fotoquimioterapia , Ácido Ascórbico/farmacologia , Linhagem Celular Tumoral , Transportador de Glucose Tipo 1 , Glutationa/metabolismo , Humanos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
11.
Angew Chem Int Ed Engl ; 61(16): e202117075, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35133703

RESUMO

We report a novel multifunctional construct, M1, designed explicitly to target the DNA damage response in cancer cells. M1 contains both a floxuridine (FUDR) and protein phosphatase 2A (PP2A) inhibitor combined with a GSH-sensitive linker. Further conjugation of the triphenylphosphonium moiety allows M1 to undergo specific activation in the mitochondria, where mitochondria-mediated apoptosis is observed. Moreover, M1 has enormous effects on genomic DNA ascribed to FUDR's primary function of impeding DNA/RNA synthesis combined with diminishing PP2A-activated DNA repair pathways. Importantly, mechanistic studies highlight the PP2A obtrusion in FUDR/5-fluorouracil (5-FU) therapy and underscore the importance of its inhibition to harbor therapeutic potential. HCT116 cell xenograft-bearing mice that have a low response rate to 5-FU show a prominent effect with M1, emphasizing the importance of DNA damage response targeting strategies using tumor-specific microenvironment-activatable systems.


Assuntos
Pró-Fármacos , Animais , Linhagem Celular Tumoral , DNA , Floxuridina/farmacologia , Floxuridina/uso terapêutico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos , Camundongos , Mitocôndrias , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico
12.
J Am Chem Soc ; 143(37): 15427-15439, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34516125

RESUMO

Traditional surgical intervention and antibiotic treatment are poor and even invalid for chronic diseases including periodontitis induced by diverse oral pathogens, which often causes progressive destruction of tissues, even tooth loss, and systemic diseases. Herein, an ointment comprising atomic-layer Fe2O3-modified two-dimensional porphyrinic metal-organic framework (2D MOF) nanosheets is designed by incorporating a polyethylene glycol matrix. After the atomic layer deposition surface engineering, the enhanced photocatalytic activity of the 2D MOF heterointerface results from lower adsorption energy and more charge transfer amounts due to the synergistic effect of metal-linker bridging units, abundant active sites, and an excellent light-harvesting network. This biocompatible and biodegradable 2D MOF-based heterostructure exhibits broad-spectrum antimicrobial activity (99.87 ± 0.09%, 99.57 ± 0.21%, and 99.03 ± 0.24%) against diverse oral pathogens (Porphyromonas gingivalis, Fusobacterium nucleatum, and Staphylococcus aureus) by the synergistic effect of reactive oxygen species and released ions. This photodynamic ion therapy exhibits a superior therapeutic effect to the reported clinical periodontitis treatment owing to rapid antibacterial activity, alleviative inflammation, and improved angiogenesis.


Assuntos
Estruturas Metalorgânicas , Periodontite/terapia , Fotoquimioterapia/métodos , Catálise , Fusobacterium nucleatum , Humanos , Nanoestruturas , Periodontite/microbiologia , Fotólise , Porphyromonas gingivalis , Staphylococcus aureus
13.
Anal Chem ; 93(28): 9728-9736, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34228918

RESUMO

Vibrio parahaemolyticus is usually spread via consumption of contaminated seafood and causes vibriosis. By combination of digital microfluidic (DMF) and loop-mediated isothermal amplification (LAMP), we provided an automated instrumentation-compact DMF-LAMP device for sample-to-answer detection of V. parahaemolyticus. For the first time, how much the proper mixing might facilitate the DMF-LAMP process is explored. The results illustrated that increasing the number of flow configurations and decreasing the fluid-reversibility will extend the interfacial surface available for diffusion-based mass transfer within a droplet microreactor, thus contributing to the overall amplification reaction rate. Noticeably, the DMF-LAMP amplification plateau time is shortened by proper mixing, from 60 min in static mixing and traditional bulk LAMP to 30 min in 2-electrode mixing and 15 min in 3-electrode mixing. The device achieved much higher detection sensitivity (two copies per reaction) than previously reported devices. V. parahaemolyticus from spiked shrimps is detected by Q-tip sampling associated with 3-electrode mixing DMF-LAMPs. The detectable signal occurs within only 3 min at a higher concentration and, at most, is delayed to 18 min, with a detection limit of <0.23 × 103 CFU/g. Thus, the developed DMF-LAMP device demonstrates potential for being used as a sample-to-answer system with a quick analysis time, high sensitivity, and sample-to-answer format.


Assuntos
Vibrio parahaemolyticus , Microfluídica , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Vibrio parahaemolyticus/genética
14.
Small ; 17(44): e2103623, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34546645

RESUMO

Carbon dots (CDs) are widely studied for years due to their unique luminescent properties and potential applications in many fields. However, aggregation-caused quenching, monotonous emission modes, and unsustainable preparation impose restrictions on their performance and practical applications. Here, this work reports the facile synthesis of sustainable silk-derived multimode emitting CDs with dispersed-state fluorescence (DSF), aggregation-induced fluorescence (AIF), and aggregation-induced room temperature phosphorescence (AIRTP) through radiating sericin proteins in a household microwave oven (800 W, 2.5 min). The structure, luminescent properties, and the mechanism are investigated and discussed. The sericin-derived CDs have graphitized cores and heteroatom-cluster-rich surfaces. The DSF corresponds to the graphitized cores and the AIF origins from the aggregation-induced abundant orbital energy levels on the heteroatom-cluster-rich surfaces. The presence of abundant hydrogen bonds and small gap between the lowest singlet and triplet excited states induces AIRTP. Finally, based on the unique multimode emission of the prepared CDs, their applications in high-performance white-light-emitting diode, information encryption, anti-counterfeiting, and visual humidity sensors are demonstrated.


Assuntos
Carbono , Pontos Quânticos , Fluorescência , Luminescência , Seda
15.
BMC Anesthesiol ; 21(1): 311, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893029

RESUMO

BACKGROUND: The anesthetist and other members of the perioperative team need to be extremely cautious for successful completion of any surgery. If the final step of any general anesthetic-extubation is not sufficiently well planned, it can lead to critical airway incidents during the extubation and hinder transportation of the patient to the post-anesthesia care unit. CASE PRESENTATION: A 48-year-old female underwent video-assisted thoracoscopic surgery (VATS) combined with left lower lobectomy. The distal end of the left branch of the tracheal tube was lodged by surgical sutures. In this case, the respiratory physician burned the sutures using an argon electrode, after discussion with the thoracic surgery experts. CONCLUSIONS: Teamwork is essential when caring for a patient with a shared airway. The anesthetist and surgeon must communicate well with each other to achieve optimal surgical outcomes. Importantly, testing the patency of the ETT prior to extubation should be a regular procedure, which is practical significance to guide safe extubation.


Assuntos
Extubação/métodos , Anestesia Geral , Intubação Intratraqueal/métodos , Cirurgia Torácica Vídeoassistida , Traqueia/cirurgia , Feminino , Humanos , Pessoa de Meia-Idade
16.
Angew Chem Int Ed Engl ; 60(41): 22253-22259, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34390105

RESUMO

Room-temperature afterglow (RTA) materials with long lifetime have shown tremendous application prospects in many fields. However, there is no general design strategy to construct near-infrared (NIR)-excited multicolor RTA materials. Herein, we report a universal approach based on the efficient radiative energy transfer that supports the reabsorption from upconversion materials (UMs) to carbon dots-based RTA materials (CDAMs). Thus, the afterglow emission (blue, cyan, green, and orange) of various CDAMs can be activated by UMs under the NIR continuous-wave laser excitation. The efficient radiative energy transfer ensured the persistent multicolor afterglow up to 7 s, 6 s, 5 s, and 0.5 s by naked eyes, respectively. Given the unusual afterglow properties, we demonstrated preliminary applications in fingerprint recognition and information security. This work provides a new avenue for the activation of NIR-excited afterglow in CDAMs and will greatly expand the applications of RTA materials.

17.
Biochem Cell Biol ; 96(6): 742-751, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29940125

RESUMO

Idiopathic pulmonary fibrosis is an agnogenic chronic disorder with high morbidity and low survival rate. Quercetin is a flavonoid found in a variety of herbs with anti-fibrosis function. In this study, bleomycin was employed to induce a pulmonary fibrosis mouse model. The quercetin administration ameliorated bleomycin-induced pulmonary fibrosis, evidenced by the expression level changes of hydroxyproline, fibronectin, α-smooth muscle actin, Collagen I, and Collagen III. Similar results were observed in transforming growth factor (TGF)-ß-treated human embryonic lung fibroblast (HELF). The bleomycin or TGF-ß administration caused the increase of sphingosine-1-phosphate (S1P) level in pulmonary tissue and HELF cells, as well as its activation-required kinase, sphingosine kinase 1 (SphK1), and its degradation enzyme, sphinogosine-1-phosphate lyase (S1PL). However, the increase of S1P, SphK1, and S1PL was attenuated by application of quercetin. In addition, the effect of quercetin on fibrosis was abolished by the ectopic expression of SphK1. The colocalization of SphK1/S1PL and fibroblast specific protein 1 (FSP1) suggested the roles of fibroblasts in pulmonary fibrosis. In summary, we demonstrated that quercetin ameliorated pulmonary fibrosis in vivo and in vitro by inhibiting SphK1/S1P signaling.


Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Lisofosfolipídeos/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Quercetina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Animais , Células Cultivadas , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/antagonistas & inibidores , Esfingosina/metabolismo
18.
Innovation (Camb) ; 5(1): 100541, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38235187

RESUMO

Accurate profiling of microscopy images from small scale to high throughput is an essential procedure in basic and applied biological research. Here, we present Microsnoop, a novel deep learning-based representation tool trained on large-scale microscopy images using masked self-supervised learning. Microsnoop can process various complex and heterogeneous images, and we classified images into three categories: single-cell, full-field, and batch-experiment images. Our benchmark study on 10 high-quality evaluation datasets, containing over 2,230,000 images, demonstrated Microsnoop's robust and state-of-the-art microscopy image representation ability, surpassing existing generalist and even several custom algorithms. Microsnoop can be integrated with other pipelines to perform tasks such as superresolution histopathology image and multimodal analysis. Furthermore, Microsnoop can be adapted to various hardware and can be easily deployed on local or cloud computing platforms. We will regularly retrain and reevaluate the model using community-contributed data to consistently improve Microsnoop.

19.
Mater Horiz ; 11(1): 113-133, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37856234

RESUMO

Carbon dots (CDs) are a new type of quasi-spherical and zero-dimension carbon nanomaterial with a diameter less than 10 nm. They exhibit a broad absorption spanning from the ultraviolet (UV) to visible light regions and inspire growing interests due to their excellent performance. In recent years, it was identified that the CDs embedded in various inorganic matrices (IMs) can effectively activate afterglow emission by suppressing the nonradiative transitions of molecules and protecting the triplet excitons of CDs, which hold broad application prospects. Herein, recent advances in CDs@IMs are reviewed in detail, and the interaction and luminescence mechanisms between CDs and IMs are also summarized. We highlight the synthetic strategies of constructing composites and the roles of IMs in facilitating the applications of CDs in diverse areas. Finally, some directions and challenges of future research in this field are proposed.

20.
ACS Nano ; 18(22): 14085-14122, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38775446

RESUMO

Infectious diseases pose a serious threat and a substantial economic burden on global human and public health security, especially with the frequent emergence of multidrug-resistant (MDR) bacteria in clinical settings. In response to this urgent need, various photobased anti-infectious therapies have been reported lately. This Review explores and discusses several photochemical targeted antibacterial therapeutic strategies for addressing bacterial infections regardless of their antibiotic susceptibility. In contrast to conventional photobased therapies, these approaches facilitate precise targeting of pathogenic bacteria and/or infectious microenvironments, effectively minimizing toxicity to mammalian cells and surrounding healthy tissues. The highlighted therapies include photodynamic therapy, photocatalytic therapy, photothermal therapy, endogenous pigments-based photobleaching therapy, and polyphenols-based photo-oxidation therapy. This comprehensive exploration aims to offer updated information to facilitate the development of effective, convenient, safe, and alternative strategies to counter the growing threat of MDR bacteria in the future.


Assuntos
Antibacterianos , Infecções Bacterianas , Farmacorresistência Bacteriana Múltipla , Fotoquimioterapia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Animais , Bactérias/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa