Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7963): 57-62, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36972685

RESUMO

Exploiting the excellent electronic properties of two-dimensional (2D) materials to fabricate advanced electronic circuits is a major goal for the semiconductor industry1,2. However, most studies in this field have been limited to the fabrication and characterization of isolated large (more than 1 µm2) devices on unfunctional SiO2-Si substrates. Some studies have integrated monolayer graphene on silicon microchips as a large-area (more than 500 µm2) interconnection3 and as a channel of large transistors (roughly 16.5 µm2) (refs. 4,5), but in all cases the integration density was low, no computation was demonstrated and manipulating monolayer 2D materials was challenging because native pinholes and cracks during transfer increase variability and reduce yield. Here, we present the fabrication of high-integration-density 2D-CMOS hybrid microchips for memristive applications-CMOS stands for complementary metal-oxide-semiconductor. We transfer a sheet of multilayer hexagonal boron nitride onto the back-end-of-line interconnections of silicon microchips containing CMOS transistors of the 180 nm node, and finalize the circuits by patterning the top electrodes and interconnections. The CMOS transistors provide outstanding control over the currents across the hexagonal boron nitride memristors, which allows us to achieve endurances of roughly 5 million cycles in memristors as small as 0.053 µm2. We demonstrate in-memory computation by constructing logic gates, and measure spike-timing dependent plasticity signals that are suitable for the implementation of spiking neural networks. The high performance and the relatively-high technology readiness level achieved represent a notable advance towards the integration of 2D materials in microelectronic products and memristive applications.

2.
Nat Mater ; 21(7): 740-747, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35058609

RESUMO

The growth of inch-scale high-quality graphene on insulating substrates is desirable for electronic and optoelectronic applications, but remains challenging due to the lack of metal catalysis. Here we demonstrate the wafer-scale synthesis of adlayer-free ultra-flat single-crystal monolayer graphene on sapphire substrates. We converted polycrystalline Cu foil placed on Al2O3(0001) into single-crystal Cu(111) film via annealing, and then achieved epitaxial growth of graphene at the interface between Cu(111) and Al2O3(0001) by multi-cycle plasma etching-assisted-chemical vapour deposition. Immersion in liquid nitrogen followed by rapid heating causes the Cu(111) film to bulge and peel off easily, while the graphene film remains on the sapphire substrate without degradation. Field-effect transistors fabricated on as-grown graphene exhibited good electronic transport properties with high carrier mobilities. This work breaks a bottleneck of synthesizing wafer-scale single-crystal monolayer graphene on insulating substrates and could contribute to next-generation graphene-based nanodevices.

3.
Nat Mater ; 21(10): 1183-1190, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35941363

RESUMO

The development of membranes that block solutes while allowing rapid water transport is of great importance. The microstructure of the membrane needs to be rationally designed at the molecular level to achieve precise molecular sieving and high water flux simultaneously. We report the design and fabrication of ultrathin, ordered conjugated-polymer-framework (CPF) films with thicknesses down to 1 nm via chemical vapour deposition and their performance as separation membranes. Our CPF membranes inherently have regular rhombic sub-nanometre (10.3 × 3.7 Å) channels, unlike membranes made of carbon nanotubes or graphene, whose separation performance depends on the alignment or stacking of materials. The optimized membrane exhibited a high water/NaCl selectivity of ∼6,900 and water permeance of ∼112 mol m-2 h-1 bar-1, and salt rejection >99.5% in high-salinity mixed-ion separations driven by osmotic pressure. Molecular dynamics simulations revealed that water molecules quickly and collectively pass through the membrane by forming a continuous three-dimensional network within the hydrophobic channels. The advent of ordered CPF provides a route towards developing carbon-based membranes for precise molecular separation.


Assuntos
Grafite , Nanotubos de Carbono , Polímeros , Cloreto de Sódio , Água/química
4.
Phys Chem Chem Phys ; 25(42): 28941-28947, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855655

RESUMO

Lattice dynamics plays a significant role in manipulating the unique physical properties of materials. In this work, femtosecond transient optical spectroscopy is used to investigate the generation mechanism and relaxation dynamics of coherent phonons in Fe1.14Te-a parent compound of chalcogenide superconductors. The reflectivity time series consist of the exponential decay component due to hot carriers and damped oscillations caused by the A1g phonon vibration. The vibrational frequency and dephasing time of the A1g phonons are obtained as a function of temperature. With increasing temperature, the phonon frequency decreases and can be well described with the anharmonicity model. Dephasing time is independent of temperature, indicating that the phonon dephasing is dominated by phonon-defect scattering. The impulsive stimulated Raman scattering mechanism is responsible for the coherent phonon generation. Owing to the resonance Raman effect, the maximum photosusceptibility of the A1g phonons occurs at 1.590 eV, corresponding to an electronic transition in Fe1.14Te.

5.
Proc Natl Acad Sci U S A ; 117(25): 13908-13913, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513713

RESUMO

The optoelectronic properties of atomically thin transition-metal dichalcogenides are strongly correlated with the presence of defects in the materials, which are not necessarily detrimental for certain applications. For instance, defects can lead to an enhanced photoconduction, a complicated process involving charge generation and recombination in the time domain and carrier transport in the spatial domain. Here, we report the simultaneous spatial and temporal photoconductivity imaging in two types of WS2 monolayers by laser-illuminated microwave impedance microscopy. The diffusion length and carrier lifetime were directly extracted from the spatial profile and temporal relaxation of microwave signals, respectively. Time-resolved experiments indicate that the critical process for photoexcited carriers is the escape of holes from trap states, which prolongs the apparent lifetime of mobile electrons in the conduction band. As a result, counterintuitively, the long-lived photoconductivity signal is higher in chemical-vapor deposited (CVD) samples than exfoliated monolayers due to the presence of traps that inhibits recombination. Our work reveals the intrinsic time and length scales of electrical response to photoexcitation in van der Waals materials, which is essential for their applications in optoelectronic devices.

6.
Nano Lett ; 22(10): 3849-3855, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35549246

RESUMO

Spin-phonon coupling is a fundamental interaction in ferromagnets/antiferromagnets and plays a key role in hot carrier decay. Normally, spin transfers its excess energy to a lattice via spin-phonon coupling in hot carrier decay in ferromagnets/antiferromagnets. However, the reverse energy transfer process (i.e., from lattice to spin) is feasible in principle but rarely reported. Here, we observe an abnormal hot carrier decay with a slow fall (80 ps) in ΔR(t)/R0 time series in ferromagnet Fe1/3TaS2, which is a result of the lattice of TaS2 vdW layer transfering its energy to spin via spin-phonon coupling. The Fe ions inserted between TaS2 vdW layers with very weak bonding with TaS2 vdW layer, are the origin of the ferromagnetism and give rise to its weak electron-spin and spin-phonon couplings which in turn lead to the observed abnormal hot carrier decay in the ferromagnetic phase Fe1/3TaS2.

7.
Nano Lett ; 22(24): 10010-10017, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36480011

RESUMO

Interconnected magnetic nanowire (NW) networks offer a promising platform for three-dimensional (3D) information storage and integrated neuromorphic computing. Here we report discrete propagation of magnetic states in interconnected Co nanowire networks driven by magnetic field and current, manifested in distinct magnetoresistance (MR) features. In these networks, when only a few interconnected NWs were measured, multiple MR kinks and local minima were observed, including a significant minimum at a positive field during the descending field sweep. Micromagnetic simulations showed that this unusual feature was due to domain wall (DW) pinning at the NW intersections, which was confirmed by off-axis electron holography imaging. In a complex network with many intersections, sequential switching of nanowire sections separated by interconnects was observed, along with stochastic characteristics. The pinning/depinning of the DWs can be further controlled by the driving current density. These results illustrate the promise of such interconnected networks as integrated multistate memristors.

8.
Angew Chem Int Ed Engl ; 62(15): e202218664, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36787047

RESUMO

Using sunlight to produce valuable chemicals and fuels from carbon dioxide (CO2 ), i.e., artificial photosynthesis (AP) is a promising strategy to achieve solar energy storage and a negative carbon cycle. However, selective synthesis of C2 compounds with a high CO2 conversion rate remains challenging for current AP technologies. We performed CO2 photoelectroreduction over a graphene/silicon carbide (SiC) catalyst under simulated solar irradiation with ethanol (C2 H5 OH) selectivity of>99 % and a CO2 conversion rate of up to 17.1 mmol gcat -1 h-1 with sustained performance. Experimental and theoretical investigations indicated an optimal interfacial layer to facilitate the transfer of photogenerated electrons from the SiC substrate to the few-layer graphene overlayer, which also favored an efficient CO2 to C2 H5 OH conversion pathway.

9.
Nano Lett ; 21(18): 7699-7707, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34498876

RESUMO

In terahertz (THz) technologies, generation and manipulation of THz waves are two key processes usually implemented by different device modules. Integrating THz generation and manipulation into a single compact device will advance the applications of THz technologies in various fields. Here, we demonstrate a hybrid nonlinear plasmonic metasurface incorporating an epsilon-near-zero (ENZ) indium tin oxide (ITO) layer to seamlessly combine efficient generation and manipulation of THz waves across a wide frequency band. The coupling between the plasmonic resonance of the metasurface and the ENZ mode of the ITO thin film enhances the THz conversion efficiency by more than 4 orders of magnitude. Meanwhile, such a hybrid device is capable of shaping the polarization and wavefront of the emitted THz beam via the engineered nonlinear Pancharatnam-Berry (PB) phases of the plasmonic meta-atoms. The presented hybrid nonlinear metasurface opens a new avenue toward miniaturized integrated THz devices and systems with advanced functionalities.

10.
Phys Rev Lett ; 127(21): 217201, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860082

RESUMO

A three-dimensional singular point that consists of two oppositely aligned emergent monopoles is identified in continuous CoTb thin films, as confirmed by complementary techniques of resonant elastic x-ray scattering, Lorentz transmission electron microscopy, and scanning transmission x-ray microscopy. This new type of topological defect can be regarded as a superposition of an emergent magnetic monopole and an antimonopole, around which the source and drain of the magnetic flux overlap in space. We experimentally prove that the observed spin twist seen in Lorentz transmission electron microscopy reveals the cross section of the superimposed three-dimensional structure, providing a straightforward strategy for the observation of magnetic singularities. Such a quasiparticle provides an excellent platform for studying the rich physics of emergent electromagnetism.

11.
Microsc Microanal ; 27(4): 758-766, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34018478

RESUMO

Accurate control and measurement of real-time sample temperature are critical for the understanding and interpretation of the experimental results from in situ heating experiments inside environmental transmission electron microscope (ETEM). However, quantifying the real-time sample temperature remains a challenging task for commercial in situ TEM heating devices, especially under gas conditions. In this work, we developed a home-made micro-electrical-mechanical-system (MEMS) heater with unprecedented small temperature gradient and thermal drift, which not only enables the temperature evolution caused by gas injection to be measured in real-time but also makes the key heat dissipation path easier to model to theoretically understand and predict the temperature decrease. A new parameter termed as "gas cooling ability (H)", determined purely by the physical properties of the gas, can be used to compare and predict the gas-induced temperature decrease by different gases. Our findings can act as a reference for predicting the real temperature for in situ heating experiments without closed-loop temperature sensing capabilities in the gas environment, as well as all gas-related heating systems.

12.
Chem Soc Rev ; 49(3): 671-707, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31913391

RESUMO

Developing eco-friendly high-performance piezoceramics without lead has become one of the most advanced frontiers in interdisciplinary research. Although potassium sodium-niobate {(K,Na)NbO3, KNN} based ceramics are believed to be one of the most promising lead-free candidates, the relatively inferior piezoelectric properties and strong temperature dependency have hindered their development for more than 50 years since being discovered in the 1950s. It was not until 2014 that our group initially proposed a new phase boundary (NPB) that simultaneously improved the piezoelectric properties and temperature stability of non-textured KNN-based ceramics to the level of partly lead-based ceramics. The NPB has been then proved by some researchers and believed to pave the way for "lead-free at last" proposed by E. Cross (Nature, 2004, 432, 24). However, the understanding of the NPB is still in its infancy, leaving many controversies, including the phase structure and physical mechanisms at the NPB as well as the essential difference when compared with other phase boundaries. In this context, we systematically summarized the origin and development of the NPB, focusing on the construction, structure and intrinsic trait of the NPB, the effects of the NPB on the performance, and the validity and related incipient devices of the NPB. Particularly, we concluded the phase structure and domain structure locating at the NPB, analyzed the physical mechanisms in depth, proposed the possible methods to further improve the performance at the NPB, and demonstrated the validity and scope of the NPB as well as the device application. Finally, we gave out our perspective on the challenges and future research of KNN-based ceramics with NPB. Therefore, we believe that this review could promote the understanding of the NPB and guide the future work of KNN-based ceramics.

13.
Opt Express ; 28(2): 1987-1998, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121898

RESUMO

Strongly confined surface waves can be achieved on periodically structured metal surfaces and are known as spoof surface plasmon polaritons (SPPs). In this work, several terahertz SPP devices based on curved waveguides are demonstrated. The transmittance and bending loss of 90-degree curved spoof SPP waveguides with a radius of curvature ranging from 200 to 2300 µm are investigated to identify the regime for high transmission. A commutator is designed and experimentally demonstrated. Furthermore, coupling equations are derived and verified for efficient coupling between bend-straight waveguides and between bend-bend waveguides. The results will be of great value for future integrated terahertz plasmonic systems.

14.
Appl Opt ; 59(33): 10451-10456, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33361978

RESUMO

Terahertz (THz) spoof surface plasmon polariton (SPP) waveguides can provide subwavelength confinement, which makes it possible for the THz waves to transmit at low loss over long distances along a metallic surface. This work reports on the design and actualization of an ultra-compact wavelength diplexer formed by THz spoof SPP waveguiding structures. By adding a certain number of periodic pillars in the coupling part of the directional coupler, the refractive index of the anti-symmetrically distributed odd modes can be engineered, thereby adjusting the coupling length. By adjusting the periodic pillar parameters properly, the SPP modes at two target frequencies will be coupled in the device for an odd or even number of times, so that the SPP modes at these two frequencies can be coupled out from different ports. The length of the wavelength diplexer is 1.6 mm, which is about 12.8% of its traditional counterpart. Minimum simulated transmittances of -24.34dB and -26.27dB can be obtained at 0.637 THz and 0.667 THz, respectively. The insertion losses at the two operating frequencies are less than 0.46 dB, and the extinction ratios are both better than 19 dB. By cascading the proposed diplexers, a compact wavelength demultiplexer with more channels can be obtained, which has important applications for future THz integrated communication systems.

15.
Opt Express ; 27(20): A1627-A1635, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684640

RESUMO

Terahertz waves have attracted considerable research interest in recent years because of their potential applications in diverse fields. As an important device to control terahertz waves, beam splitters with greater flexibility and higher degrees of freedom are highly desirable. In order to obtain higher degrees of freedom in beam splitting, 2-bit or higher-bit coding elements are usually introduced into metamaterial beam splitters based on the coding theory. In this work, a new "offset" coding scheme using only the 1-bit coding elements of "0" and "1" is presented, and the period of coding for beam splitting can be a non-integer multiple of the length of a single unit rather than only its integer multiples. Therefore, more beam-splitting degrees of freedom can be obtained, and the design strategy is experimentally verified. We believe that the new coding scheme will also be of significance in radar cross section reduction and flexible wave control.

16.
Proc Natl Acad Sci U S A ; 113(40): 11208-11213, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27663743

RESUMO

In this work, we constructed a Collagen I-Matrigel composite extracellular matrix (ECM). The composite ECM was used to determine the influence of the local collagen fiber orientation on the collective intravasation ability of tumor cells. We found that the local fiber alignment enhanced cell-ECM interactions. Specifically, metastatic MDA-MB-231 breast cancer cells followed the local fiber alignment direction during the intravasation into rigid Matrigel (∼10 mg/mL protein concentration).


Assuntos
Colágeno/química , Metástase Neoplásica/patologia , Neoplasias/patologia , Biópsia , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Matriz Extracelular/metabolismo , Feminino , Humanos , Imagem com Lapso de Tempo
17.
Nano Lett ; 18(11): 7200-7206, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30289264

RESUMO

Vertical and lateral heterostructures of van der Waals materials provide tremendous flexibility for band-structure engineering. Because electronic bands are sensitively affected by defects, strain, and interlayer coupling, the edge and heterojunction of these two-dimensional (2D) systems may exhibit novel physical properties, which can be fully revealed only by spatially resolved probes. Here, we report the spatial mapping of photoconductivity in a monolayer-bilayer WSe2 lateral heterostructure under multiple excitation lasers. As the photon energy increases, the light-induced conductivity detected by microwave impedance microscopy first appears along the heterointerface and bilayer edge, then along the monolayer edge, inside the bilayer area, and finally in the interior of the monolayer region. The sequential emergence of mobile carriers in different sections of the sample is consistent with the theoretical calculation of local energy gaps. Quantitative analysis of the microscopy and transport data also reveals the linear dependence of photoconductivity on the laser intensity and the influence of interlayer coupling on carrier recombination. Combining theoretical modeling, atomic-scale imaging, mesoscale impedance microscopy, and device-level characterization, our work suggests an exciting perspective for controlling the intrinsic band gap variation in 2D heterostructures down to a regime of a few nanometers.

18.
Nano Lett ; 18(2): 1506-1515, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29389132

RESUMO

Since the first exfoliation and identification of graphene in 2004, research on layered ultrathin two-dimensional (2D) nanomaterials has achieved remarkable progress. Realizing the special importance of 2D geometry, we demonstrate that the controlled synthesis of nonlayered nanomaterials in 2D geometry can yield some unique properties that otherwise cannot be achieved in these nonlayered systems. Herein, we report a systematic study involving theoretical and experimental approaches to evaluate the Li-ion storage capability in 2D atomic sheets of nonlayered molybdenum dioxide (MoO2). We develop a novel monomer-assisted reduction process to produce high quality 2D sheets of nonlayered MoO2. When used as lithium-ion battery (LIB) anodes, these ultrathin 2D-MoO2 electrodes demonstrate extraordinary reversible capacity, as high as 1516 mAh g-1 after 100 cycles at the current rate of 100 mA g-1 and 489 mAh g-1 after 1050 cycles at 1000 mA g-1. It is evident that these ultrathin 2D sheets did not follow the normal intercalation-cum-conversion mechanism when used as LIB anodes, which was observed for their bulk analogue. Our ex situ XPS and XRD studies reveal a Li-storage mechanism in these 2D-MoO2 sheets consisting of an intercalation reaction and the formation of metallic Li phase. In addition, the 2D-MoO2 based microsupercapacitors exhibit high areal capacitance (63.1 mF cm-2 at 0.1 mA cm-2), good rate performance (81% retention from 0.1 to 2 mA cm-2), and superior cycle stability (86% retention after 10,000 cycles). We believe that our work identifies a new pathway to make 2D nanostructures from nonlayered compounds, which results in an extremely enhanced energy storage capability.

19.
Nano Lett ; 18(2): 1274-1279, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29299928

RESUMO

Nanoscale topologically nontrivial spin textures, such as magnetic skyrmions, have been identified as promising candidates for the transport and storage of information for spintronic applications, notably magnetic racetrack memory devices. The design and realization of a single skyrmion chain at room temperature (RT) and above in the low-dimensional nanostructures are of great importance for future practical applications. Here, we report the creation of a single skyrmion bubble chain in a geometrically confined Fe3Sn2 nanostripe with a width comparable to the featured size of a skyrmion bubble. Systematic investigations on the thermal stability have revealed that the single chain of skyrmion bubbles can keep stable at temperatures varying from RT up to a record-high temperature of 630 K. This extreme stability can be ascribed to the weak temperature-dependent magnetic anisotropy and the formation of edge states at the boundaries of the nanostripes. The realization of the highly stable skyrmion bubble chain in a geometrically confined nanostructure is a very important step toward the application of skyrmion-based spintronic devices.

20.
Nano Lett ; 18(2): 1253-1258, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29378142

RESUMO

Enriching the functionality of ferroelectric materials with visible-light sensitivity and multiaxial switching capability would open up new opportunities for their applications in advanced information storage with diverse signal manipulation functions. We report experimental observations of robust intralayer ferroelectricity in two-dimensional (2D) van der Waals layered α-In2Se3 ultrathin flakes at room temperature. Distinct from other 2D and conventional ferroelectrics, In2Se3 exhibits intrinsically intercorrelated out-of-plane and in-plane polarization, where the reversal of the out-of-plane polarization by a vertical electric field also induces the rotation of the in-plane polarization. On the basis of the in-plane switchable diode effect and the narrow bandgap (∼1.3 eV) of ferroelectric In2Se3, a prototypical nonvolatile memory device, which can be manipulated both by electric field and visible light illumination, is demonstrated for advancing data storage technologies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa