Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nucleic Acids Res ; 52(9): 5166-5178, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647072

RESUMO

L1 elements are retrotransposons currently active in mammals. Although L1s are typically silenced in most normal tissues, elevated L1 expression is associated with a variety of conditions, including cancer, aging, infertility and neurological disease. These associations have raised interest in the mapping of human endogenous de novo L1 insertions, and a variety of methods have been developed for this purpose. Adapting these methods to mouse genomes would allow us to monitor endogenous in vivo L1 activity in controlled, experimental conditions using mouse disease models. Here, we use a modified version of transposon insertion profiling, called nanoTIPseq, to selectively enrich young mouse L1s. By linking this amplification step with nanopore sequencing, we identified >95% annotated L1s from C57BL/6 genomic DNA using only 200 000 sequencing reads. In the process, we discovered 82 unannotated L1 insertions from a single C57BL/6 genome. Most of these unannotated L1s were near repetitive sequence and were not found with short-read TIPseq. We used nanoTIPseq on individual mouse breast cancer cells and were able to identify the annotated and unannotated L1s, as well as new insertions specific to individual cells, providing proof of principle for using nanoTIPseq to interrogate retrotransposition activity at the single-cell level in vivo.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Genoma/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Camundongos Endogâmicos C57BL , Sequenciamento por Nanoporos/métodos , Retroelementos/genética , Análise de Sequência de DNA/métodos
2.
Opt Express ; 32(11): 20080-20091, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859125

RESUMO

Metasurfaces have demonstrated remarkable capabilities in manipulating light fields across diverse applications. However, current research tends to examine these functionalities in isolation, prompting a growing interest in integrating different functionalities within a singular metasurface device. In this paper, we propose and experimentally demonstrate a bifunctional metasurface capable of providing concealment and sensing functions simultaneously. Specifically, the proposed nanostructure effectively operates as a one-way mirror, exhibiting an average reflection rate of approximately 90% under external illumination, alongside an absorption rate of 87.9% from the opposite direction of incidence. This functionality renders it suitable for privacy-enhancing building windows. Meanwhile, this nanostructure also integrates liquid sensing capabilities boasting a sensitivity of 464 nm/RIU, which is particularly valuable for monitoring liquid-based corrosion. The experimental performance of the prepared 6-inch nanohole-patterned metasurface closely aligns with the simulations, and the utilization of flexible polyethylene terephthalate (PET) film, coupled with nanoimprint lithography technology, enables a direct and cost-effective manufacturing process that can be scaled up for widespread applications.

3.
Mar Drugs ; 22(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38667765

RESUMO

Marine natural products are important sources of novel drugs. In this study, we isolated 4-hydroxyphenylacetic acid (HPA) from the marine-derived fungus Emericellopsis maritima Y39-2. The antithrombotic activity and mechanism of HPA were reported for the first time. Using a zebrafish model, we found that HPA had a strong antithrombotic activity because it can significantly increase cardiac erythrocytes, blood flow velocity, and heart rate, reduce caudal thrombus, and reverse the inflammatory response caused by Arachidonic Acid (AA). Further transcriptome analysis and qRT-PCR validation demonstrated that HPA may regulate autophagy by inhibiting the PI3K/AKT/mTOR signaling pathway to exert antithrombotic effects.


Assuntos
Autofagia , Fibrinolíticos , Fenilacetatos , Peixe-Zebra , Animais , Fenilacetatos/farmacologia , Autofagia/efeitos dos fármacos , Fibrinolíticos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Produtos Biológicos/farmacologia , Trombose/tratamento farmacológico , Modelos Animais de Doenças , Organismos Aquáticos
4.
Molecules ; 29(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675723

RESUMO

Silibinin is a flavonoid compound extracted from the seeds of Silybum marianum (L.) Gaertn. It has the functions of liver protection, blood-lipid reduction and anti-tumor effects. However, the potential molecular mechanism of silibinin against tumors is still unknown. This study aimed to assess the anti-tumor effects of silibinin in adenoid cystic carcinoma (ACC2) cells and Balb/c nude mice, and explore its potential mechanism based on network pharmacology prediction and experimental verification. A total of 347 targets interacting with silibinin were collected, and 75 targets related to the tumor growth process for silibinin were filtrated. Based on the PPI analysis, CASP3, SRC, ESR1, JAK2, PRKACA, HSPA8 and CAT showed stronger interactions with other factors and may be the key targets of silibinin for treating tumors. The predicted target proteins according to network pharmacology were verified using Western blot analysis in ACC2 cells and Balb/c nude mice. In the pharmacological experiment, silibinin was revealed to significantly inhibit viability, proliferation, migration and induce the apoptosis of ACC2 cells in vitro, as well as inhibit the growth and development of tumor tissue in vivo. Western blot analysis showed that silibinin affected the expression of proteins associated with cell proliferation, migration and apoptosis, such as MMP3, JNK, PPARα and JAK. The possible molecular mechanism involved in cancer pathways, PI3K-Akt signaling pathway and viral carcinogenesis pathway via the inhibition of CASP3, MMP3, SRC, MAPK10 and CDK6 and the activation of PPARα and JAK. Overall, our results provided insight into the pharmacological mechanisms of silibinin in the treatment of tumors. These results offer a support for the anti-tumor uses of silibinin.


Assuntos
Apoptose , Proliferação de Células , Farmacologia em Rede , Silibina , Silibina/farmacologia , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos/farmacologia
5.
Opt Express ; 31(16): 26685-26696, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710523

RESUMO

The metalens has vast applications in biomedicine and industrial manufacturing due to their ultrathin structure and vital ability to manipulate the properties of light waves for long-infrared systems. However, it is difficult for metalens to achieve the confocal function with high focusing efficiency, wide wavelength bandwidth, and low structural complexity. Here, we propose and experimentally demonstrate an all-silicon dielectric metalens composed of arrays of minimalist meta-atoms with a single rectangular nanopillar arranged on a periodic square lattice substrate, which realizes the confocal function of the orthogonal-linear-polarized light with wavelengths of 10.6 µm and 9.3 µm, with focusing efficiencies of 64.94% and 60.03%, respectively. Also, it reveals nearly the diffraction-limited focusing performance. In addition, the metalens can realize precise long-infrared thermal imaging. Moreover, the proposed metalens is compatible with the standard complementary metal oxide semiconductor processes, which can effectively reduce the manufacturing cost and provide a feasible solution for developing planar integrated multifunctional micro-nanophotonic devices in the long-infrared field.

6.
Planta Med ; 89(7): 764-772, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940929

RESUMO

Seven main ginsenosides, including ginsenoside Re, ginsenoside Rb1, pseudoginsenoside F11, ginsenoside Rb2, ginsenoside Rb3, ginsenoside Rd, and ginsenoside F2, were identified by LC-QTOF MS/MS from root, leaf and flower extracts of Panax quinquefolius. These extracts promoted intersegmental vessel growth in a zebrafish model, indicating their potential cardiovascular health benefits. Network pharmacology analysis was then conducted to reveal the potential mechanisms of ginsenoside activity in the treatment of coronary artery disease. GO and KEGG enrichment analyses elucidated that G protein-coupled receptors played a critical role in VEGF-mediated signal transduction and that the molecular pathways associated with ginsenoside activity are involved in neuroactive ligand-receptor interaction, cholesterol metabolism, the cGMP-PKG signaling pathway, etc. Moreover, VEGF, FGF2, and STAT3 were confirmed as the major targets inducing proliferation of endothelial cells and driving the pro-angiogenic process. Overall, ginsenosides could be potent nutraceutical agents that act to reduce the risks of cardiovascular disease. Our findings will provide a basis to utilize the whole P. quinquefolius plant in drugs and functional foods.


Assuntos
Doença da Artéria Coronariana , Ginsenosídeos , Panax , Animais , Ginsenosídeos/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Peixe-Zebra , Extratos Vegetais/farmacologia
7.
Zhongguo Zhong Yao Za Zhi ; 48(2): 465-471, 2023 Jan.
Artigo em Zh | MEDLINE | ID: mdl-36725236

RESUMO

The present study observed the regulatory effect of total flavonoids of Ziziphora clinopodioides on autophagy and the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) signaling pathways in ApoE~(-/-) mice and explored the mechanism of total flavonoids of Z. clinopodioides against atherosclerosis(AS). ApoE~(-/-) mice were fed on a high-fat diet for eight weeks to induce an AS model. The model mice were randomly divided into a model group, a positive control group, and low-, medium-and high-dose groups of total flavonoids of Z. clinopodioides, while C57BL/6J mice fed on a common diet were assigned to the blank group. The serum and aorta samples were collected after intragastric administration for 12 weeks, and the serum levels of total cholesterol(TC), triglyceride(TG), low density lipoprotein-cholesterol(LDL-C), and high density lipoprotein-cholesterol(HDL-C) were detected by an automatic biochemical analyzer. The serum expression levels of intercellular adhesion molecule-1(ICAM-1), vascular cell adhesion molecule-1(VCAM-1), matrix metalloproteinase-2(MMP-2), and matrix metalloprotei-nase-9(MMP-9) were detected by enzyme-linked immunosorbent assay(ELISA). Oil red O staining was used to observe the aortic plaque area in mice. Hematoxylin-eosin(HE) staining was used to observe the aortic plaque and pathological changes in mice. The expression of P62 and LC3 in the aorta was detected by the immunofluorescence method. The protein expression of LC3Ⅱ/Ⅰ, Beclin-1, P62, p-PI3K, p-Akt, and p-mTOR in the aorta of mice was detected by Western blot. The results showed that compared with the blank group, the serum levels of TC, TG, LDL-C, ICAM-1, VCAM-1, MMP-2 and MMP-9 in the model group were significantly increased(P<0.01 or P<0.05), the content of HDL-C was decreased(P<0.05), intra-aortic plaque area was enlarged(P<0.01), the expression of LC3 in the aorta was significantly down-regulated, P62 expression was up-regulated(P<0.01 or P<0.05), the expressions of LC3Ⅱ/Ⅰ and Beclin-1 in the aortic lysate were significantly down-regulated, and the expressions of p-PI3K, p-Akt, p-mTOR and P62 were significantly increased(P<0.01). The medium-and high-dose groups of total flavonoids of Z. clinopodioides could reduce the serum levels of TC, TG, LDL-C, ICAM-1, VCAM-1, MMP-2, and MMP-9 in AS model mice(P<0.01 or P<0.05), and increase the content of HDL-C(P<0.01 or P<0.05). The aortic plaque area of mice after middle and high doses of total flavonoids of Z. clinopodioides was significantly reduced(P<0.01), the content of foam cells decrease, and the narrowing of the lumen decreased. The total flavonoids of Z. clinopodioides significantly increased the expression of LC3 in the aorta and the expression of LC3Ⅱ/Ⅰ and Beclin-1 in the lysate, and decreased the expression of P62 in the aorta and the expression of p-PI3K, p-Akt, p-mTOR and P62 in the lysate(P<0.01 or P<0.05). The results showed that the total flavonoids of Z. clinopodioides could improve the content of blood lipids and inflammatory factors, and reduce the generation of foam cells and plaques in aortic tissue, and the mechanism may be related to the regulation of PI3K/Akt/mTOR signaling pathway.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Apolipoproteínas E , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Proteína Beclina-1 , LDL-Colesterol , Molécula 1 de Adesão Intercelular , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Molécula 1 de Adesão de Célula Vascular/genética
8.
Mol Cancer ; 21(1): 37, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130920

RESUMO

PURPOSE: The overall response of cisplatin-based chemotherapy in bladder urothelial carcinoma (BUC) remains unsatisfactory due to the complex pathological subtypes, genomic difference, and drug resistance. The genes that associated with cisplatin resistance remain unclear. Herein, we aimed to identify the cisplatin resistance associated genes in BUC. EXPERIMENTAL DESIGN: The cytotoxicity of cisplatin was evaluated in six bladder cancer cell lines to compare their responses to cisplatin. The T24 cancer cells exhibited the lowest sensitivity to cisplatin and was therefore selected to explore the mechanisms of drug resistance. We performed genome-wide CRISPR screening in T24 cancer cells in vitro, and identified that the gene heterogeneous nuclear ribonucleoprotein U (HNRNPU) was the top candidate gene related to cisplatin resistance. Epigenetic and transcriptional profiles of HNRNPU-depleted cells after cisplatin treatment were analyzed to investigate the relationship between HNRNPU and cisplatin resistance. In vivo experiments were also performed to demonstrate the function of HNRNPU depletion in cisplatin sensitivity. RESULTS: Significant correlation was found between HNRNPU expression level and sensitivity to cisplatin in bladder cancer cell lines. In the high HNRNPU expressing T24 cancer cells, knockout of HNRNPU inhibited cell proliferation, invasion, and migration. In addition, loss of HNRNPU promoted apoptosis and S-phase arrest in the T24 cells treated with cisplatin. Data from The Cancer Genome Atlas (TCGA) demonstrated that HNRNPU expression was significantly higher in tumor tissues than in normal tissues. High HNRNPU level was negatively correlated with patient survival. Transcriptomic profiling analysis showed that knockout of HNRNPU enhanced cisplatin sensitivity by regulating DNA damage repair genes. Furthermore, it was found that HNRNPU regulates chemosensitivity by affecting the expression of neurofibromin 1 (NF1). CONCLUSIONS: Our study demonstrated that HNRNPU expression is associated with cisplatin sensitivity in bladder urothelial carcinoma cells. Inhibition of HNRNPU could be a potential therapy for cisplatin-resistant bladder cancer.


Assuntos
Antineoplásicos , Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma de Células de Transição/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
9.
Inorg Chem ; 61(1): 456-463, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34932332

RESUMO

Developing fluorescent materials with multiple and tunable emissions under different conditions is necessary to meet the growing demand for optical anticounterfeiting technology. Different modes of fluorescence emission can be obtained by loading multiple fluorescent components into metal-organic frameworks (MOFs) and modulating the interaction among them for multiple anticounterfeiting purposes. Herein, a Cd-based MOF (HNU-60) was constructed as a host to encapsulate both lanthanide ions and carbon quantum dots. Multiple fluorescence emissions can be achieved by modulation of host-guest and guest-guest interaction, which holds promise for multiple anticounterfeiting applications. This work opens the opportunity to construct the hybrid MOF-based materials with controlled fluorescence properties for emerging anticounterfeiting applications in various fields.

10.
Drug Chem Toxicol ; 45(1): 143-150, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31656113

RESUMO

Acetyl-11-keto-ß-boswellic acid (AKBA), a triterpenoid from Boswellia serrate, is regarded as an angiogenesis inhibitor. However, its toxicity is unknown. The aim of this study was to examine its developmental toxicity and cardiotoxicity. A developmental toxicity assay in zebrafish embryos/larvae from 4 to 96 hours post-fertilization (hpf) was performed and a cardiotoxicity assay was designed from 48 to 72 hpf. Markers of oxidative stress and related genes were selected to access the possible mechanisms. According to the results, AKBA induced pericardium edema, yolk-sac edema, abnormal melanin, spinal curvature, hatching inhibition and shortened body length. Further, increased SV-BA distance, reduced heart rate, increased pericardium area and decreased blood flow velocity were detected in AKBA treated groups. The inhibition of cardiac progenitor gene expression, such as Nkx2.5 and Gata4, may be related to cardiotoxicity. The activities of antioxidant enzymes were decreased and the content of MDA was increased. In addition, AKBA treatment decreased the expression levels of Mn-Sod, Cat, and Gpx. These results suggested that AKBA induced developmental toxicity and cardiotoxicity through oxidative stress. As far as we know, this is the first report on the toxicity of AKBA. It reminds us to pay attention to developmental toxicity and cardiotoxicity of AKBA.


Assuntos
Triterpenos , Peixe-Zebra , Animais , Cardiotoxicidade , Larva , Estresse Oxidativo , Triterpenos/toxicidade , Peixe-Zebra/genética
11.
Molecules ; 27(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35056663

RESUMO

Lipids are key factors in nutrition, structural function, metabolic features, and other biological functions. In this study, the lipids from the heads of four species of shrimp (Fenneropenaeus chinensis (FC), Penaeus japonicus (PJ), Penaeus vannamei (PV), and Procambarus clarkia (PCC)) were compared and characterized based on UPLC-Q-Exactive Orbitrap/MS. We compared the differences in lipid composition of four kinds of shrimp head using multivariate analysis. In addition, a zebrafish model was used to evaluate pro-angiogenic, anti-inflammatory, anti-thrombotic, and cardioprotective activities of the shrimp head lipids. The lipids from the four kinds of shrimp head had different degrees of pro-angiogenic activities, and the activities of PCC and PJ shrimp lipids were more significant than those of the other two species. Four lipid groups displayed strong anti-inflammatory activities. For antithrombotic activity, only PCC (25 µg/mL) and PV (100 µg/mL) groups showed obvious activity. In terms of cardioprotective activity, the four kinds of lipid groups significantly increased the zebrafish heart rhythms. The heart distances were shortened, except for those of the FC (100 µg/mL) and PJ (25 µg/mL) groups. Our comprehensive lipidomics analysis and bioactivity study of lipids from different sources could provide a basis for the better utilization of shrimp.


Assuntos
Anti-Inflamatórios/farmacologia , Cardiotônicos/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Fibrinolíticos/farmacologia , Lipídeos/análise , Lipídeos/farmacologia , Espectrometria de Massas/métodos , Animais , Sistema Cardiovascular/efeitos dos fármacos , Lipidômica , Penaeidae , Trombose/tratamento farmacológico , Peixe-Zebra
12.
Analyst ; 146(17): 5264-5270, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34337624

RESUMO

Peroxynitrite (ONOO-) is a highly reactive substance, and plays an essential part in maintaining cellular homeostasis. It is crucial to monitor the ONOO- level in cells in normal and abnormal states. We introduced a p-dimethylaminophenylether-based fluorescent probe PDPE-PN, which could be synthesized readily. The new probe had prominent sensitivity and specificity, and a fast response towards ONOO-. The spectral performance of probe PDPE-PN was outstanding and the limit of detection was 69 nM. Probe PDPE-PN with low toxicity was applied to detect endogenous/exogenous ONOO- in RAW 264.7 macrophages and zebrafish. Importantly, successful application of the new receptor opens up new ideas for the design of ONOO- probes.


Assuntos
Corantes Fluorescentes , Peixe-Zebra , Animais , Corantes Fluorescentes/toxicidade , Macrófagos , Ácido Peroxinitroso/toxicidade
13.
Molecules ; 26(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34833921

RESUMO

Panax quinquefolius, a popular medicinal herb, has been cultivated in China for many years. In this work, the region-specific profiles of metabolites in P. quinquefolius from Wendeng was investigated using liquid-chromatography-quadrupole-time-of-flight-(LC-Q-TOF)-based metabolomics analysis. The three most abundant biomarkers, identified as ginsenoside Rb3, notoginsenoside R1, and ginsenoside Rc, were the representative chemical components employed in the network pharmacology analysis. In addition, molecular docking and western blotting analyses revealed that the three compounds were effective binding ligands with Hsp90α, resulting in the inactivation of SRC and PI3K kinase, which eventually led to the inactivation of the Akt and ERK pathways and lung cancer suppression. The outcomes obtained herein demonstrated the intriguing chemical characteristics and potential functional activities of P. quinquefolius from Wendeng.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/metabolismo , Biomarcadores/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Panax/química , Células A549 , Linhagem Celular Tumoral , China , Cromatografia Líquida de Alta Pressão/métodos , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Humanos , Metabolômica/métodos , Simulação de Acoplamento Molecular/métodos , Raízes de Plantas/química , Plantas Medicinais/química , Saponinas/química , Saponinas/farmacologia
14.
J Asian Nat Prod Res ; 22(4): 329-337, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31190553

RESUMO

Two novel glycosides, apostichoposide A1 (1) and B1 (2), were isolated from the viscera of Chinese sea cucumbers (Apostichopus japonicus, Selenka) collected in the Bohai sea. Both the isolated glycosides were characterized by non-holostane type aglycones having 18(16)-lactone and 7(8)-double bond. Cytotoxic activities of the two compounds were evaluated against three human cancer cell lines. Compound 1 had adequate cytotoxic activity against MGC-803 and PC-3M cell lines. Our results indicated that glycosides present in A. japonicus viscera are an important high value resource for biotechnological applications.


Assuntos
Pepinos-do-Mar , Stichopus , Triterpenos , Animais , Glicosídeos , Humanos , Estrutura Molecular , Vísceras
15.
Appl Microbiol Biotechnol ; 103(20): 8375-8381, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31444521

RESUMO

Because of the emergence of antibiotic resistance, we must investigate new antibiotical agents. The present study was designed to find new compounds with antibacterial activity from metabolites of Bacillus pumilus. We found that the concentrated fermentation broth of Bacillus pumilus has antibacterial property. By high-performance liquid chromatography (HPLC), three compounds with antibacterial activity were first isolated from the ethyl acetate layer of fermentation broth of Bacillus pumilus. And then their structures were identified by nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. According to the data, the compound 1, compound 2, and compound 3 were determined to be 3,4-dipentylhexane-2,5-diol, 1,1'-(4,5-dibutylcyclohexane-1,2-diyl)bis(ethan-1-ol), and 1,1'-(4,5-dibutyl-3,6-dimethylcyclohexane-1,2-diyl)bis(ethan-1-one). And all of them exhibited potent inhibitory effects against a panel of pathogenic bacteria including Staphylococcus aureus ATCC6538, Micrococcus luteus CMCC28001, Variant Salmonella gallinarum CVCC79207, Pasteurella multocida CVCC474, Swine Salmonella, Salmonella enterica ATCC13076, Swine Escherichia coli K88, Chicken Escherichia coli O78. Given its antibacterial activity, 3,4-dipentylhexane-2,5-diol, 1,1'-(4,5-dibutylcyclohexane-1,2-diyl)bis(ethan-1-ol), 1,1'-(4,5-dibutyl-3,6-dimethylcyclohexane-1,2-diyl)bis(ethan-1-one) are assumed to be promising agents for further development as antibacterial agents.


Assuntos
Antibacterianos/isolamento & purificação , Bacillus pumilus/metabolismo , Meios de Cultura/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Antibacterianos/química , Bacillus pumilus/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana
16.
Mikrochim Acta ; 187(1): 64, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31853725

RESUMO

A sensitive nonenzymatic amperometric glucose sensor is described that relies on a glassy carbon electrode modified with a macro-/meso-porous NiCo2O4. NiCo2O4 with spinel structure has been prepared via a one-step solution combustion method. The material was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen absorption/desorption. An electrode was coated with the porous material and then displayed excellent electrocatalytic activity towards the direct oxidation of glucose in 0.15 M NaOH solution by cyclic voltammetry. Amperometric I-t curve demonstrated a sensitivity of 2100 µA·mM-1·cm-2 at an applied potential of 0.45 V (vs Hg/HgCl). The sensor has a linear response in the 0.001 to 1.0 mΜ glucose concentration range, a fast response time (3.9 s) and a low detection limit (0.38 µΜ). Graphical abstract.


Assuntos
Técnicas Biossensoriais , Cobalto/química , Glucose/análise , Níquel/química , Óxidos/química , Carbono/química , Técnicas Eletroquímicas , Eletrodos , Tamanho da Partícula , Porosidade , Propriedades de Superfície
17.
Pak J Pharm Sci ; 32(6): 2611-2615, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31969293

RESUMO

Ziziphora clinopodioide Lam, a traditional Chinese medicinal plant, has been used to treat hypertension, coronary heart disease and other cardiovascular diseases, autophagy plays an important role in these diseases. This study investigated the effects of Z. clinopodioides and its active components on autophagy using cell biology. Normal rat kidney (NRK) cells transfected with green fluorescent protein-associated microtubule-protein 1 light Chain 3 (GFP-LC3) were intervened with different doses of ethanol and water extracts of Z. clinopodioides and the active components of Z. clinopodioides. After 4 hours treatment, the autophagy spot aggregation in NRK cells was photographed and observed by laser scanning confocal microscopy. The results showed that the water and ethanol extracts of Z. clinopodioides can activate autophagy, the effect of activating autophagy was more significant, when the dose was increased. Five components including chrysin, luteolin, quercetin, oleanolic acid and ursolic acid were identified as the active principles in activating autophagy. This research may provide a reference for the further study of mechanism and material basis of Z. clinopodioides in treatment of cardiovascular diseases.


Assuntos
Autofagia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Lamiaceae/química , Extratos Vegetais/farmacologia , Animais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Rim/citologia , Rim/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Ratos
18.
Mar Drugs ; 16(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486436

RESUMO

Neptunea arthritica cumingii (Nac) is a marine snail with high nutritional and commercial value; however, little is known about its active peptides. In this study, two multi-functional peptides, YSQLENEFDR (Tyr-Ser-Gln-Leu-Glu-Asn-Glu-Phe-Asp-Arg) and YIAEDAER (Tyr-Ile-Ala-Glu-Asp-Ala-Glu-Arg), were isolated and purified from meat and visceral mass extracts of Nac using a multi-bioassay-guided method and were characterized by using liquid chromatography-tandem mass spectrometry. Both peptides showed high antioxidant, angiotensin-converting enzyme (ACE)-inhibitory, and anti-diabetic activities, with half-maximal effective concentrations values less than 1 mM. Antioxidant and ACE-inhibitory activities were significantly higher for YSQLENEFDR than for YIAEDAER. In a zebrafish model, the two peptides exhibited strong scavenging ability for reactive oxygen species and effectively protected skin cells against oxidative damage without toxicity. Molecular docking simulation further predicted the interactions of the two peptides and ACE. Stability analysis study indicated that the two synthetic peptides maintained their activities under thermal stress and simulated gastrointestinal digestion conditions. The low molecular weight, high proportion of hydrophobic and negatively-charged amino acids, and specific C-terminal and N-terminal amino acids may contribute to the observed bio-activities of these two peptides with potential application for the prevention of chronic noncommunicable diseases.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Sequestradores de Radicais Livres/farmacologia , Hipoglicemiantes/farmacologia , Peptídeos/farmacologia , Caramujos/metabolismo , Sequência de Aminoácidos , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Animais , Animais Geneticamente Modificados , Cromatografia Líquida de Alta Pressão/métodos , Embrião não Mamífero , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/metabolismo , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/metabolismo , Modelos Animais , Simulação de Acoplamento Molecular , Peso Molecular , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem/métodos , Peixe-Zebra
19.
ArXiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-37461417

RESUMO

The site frequency spectrum (SFS) is a widely used summary statistic of genomic data. Motivated by recent evidence for the role of neutral evolution in cancer, we investigate the SFS of neutral mutations in an exponentially growing population. Using branching process techniques, we establish (first-order) almost sure convergence results for the SFS of a Galton-Watson process, evaluated either at a fixed time or at the stochastic time at which the population first reaches a certain size. We finally use our results to construct consistent estimators for the extinction probability and the effective mutation rate of a birth-death process.

20.
Front Pharmacol ; 15: 1336693, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370481

RESUMO

The pathological mechanisms and treatments of osteoarthritis (OA) are critical topics in medical research. This paper reviews the regulatory mechanisms of hydrogen sulfide (H2S) in OA and the therapeutic potential of H2S donors. The review highlights the importance of changes in the endogenous H2S pathway in OA development and systematically elaborates on the role of H2S as a third gaseous transmitter that regulates inflammation, oxidative stress, and pain associated with OA. It also explains how H2S can lessen bone and joint inflammation by inhibiting leukocyte adhesion and migration, reducing pro-inflammatory mediators, and impeding the activation of key inflammatory pathways such as nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK). Additionally, H2S is shown to mitigate mitochondrial dysfunction and endoplasmic reticulum stress, and to modulate Nrf2, NF-κB, PI3K/Akt, and MAPK pathways, thereby decreasing oxidative stress-induced chondrocyte apoptosis. Moreover, H2S alleviates bone and joint pain through the activation of Kv7, K-ATP, and Nrf2/HO-1-NQO1 pathways. Recent developments have produced a variety of H2S donors, including sustained-release H2S donors, natural H2S donors, and synthetic H2S donors. Understanding the role of H2S in OA can lead to the discovery of new therapeutic targets, while innovative H2S donors offer promising new treatments for patients with OA.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa