RESUMO
The Osiris gene family is believed to play important roles in insect biology. Previous studies mainly focused on the roles of Osiris in Drorophila, how Osiris operates during the development of other species remains largely unknown. Here, we investigated the role of LmOsi17 in development of the hemimetabolous insect Locusta migratoria. LmOsi17 was highly expressed in the intestinal tract of nymphs. Knockdown of LmOsi17 by RNA interference (RNAi) in nymphs resulted in growth defects. The dsLmOsi17-injected nymphs did not increase in body weight or size and eventually died. Immunohistochemical analysis showed that LmOsi17 was localized to the epithelial cells of the foregut and the gastric caecum. Histological observation and hematoxylin-eosin staining indicate that the foregut and gastric caecum are deformed in dsLmOsi17 treated nymphs, suggesting that LmOsi17 is involved in morphogenesis of foregut and gastric caecum. In addition, we observed a significant reduction in the thickness of the new cuticle in dsLmOsi17-injected nymphs compared to control nymphs. Taken together, these results suggest that LmOsi17 contributes to morphogenesis of intestinal tract that affects growth and development of nymphs in locusts.
Assuntos
Proteínas de Insetos , Locusta migratoria , Morfogênese , Ninfa , Animais , Locusta migratoria/crescimento & desenvolvimento , Locusta migratoria/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Ninfa/crescimento & desenvolvimento , Interferência de RNA , IntestinosRESUMO
Insect halteres, as specialised hind wings, play an important role during aerial manoeuvres. In Drosophila, halteres and wings are homologous appendages with different morphology. Previous studies have focused on the metamorphosis of halteres, while current knowledge about its cell lineage and regional compartmentalization is still limited. In this study, we performed cell-lineage tracing of canonical landmark signals in halteres and present a simple model for haltere development. Cell lineage tracing in wings was used as a reference. The nub showed wing-like expressions in halteres, whereas hth and pnr exhibited different expressions in adult wings and halteres. The lineage tracing revealed that the pouch region gives rise to end-bulb, and hinge cells contribute to proximal haltere formation. Moreover, we demonstrated that twi-expressing cells participate in the cell population of the distal end-bulb. Haematoxylin and eosin staining indicated that muscle cells were present at the distal end-bulb. These results indicated that adult halteres displayed unique cell lineage patterns and the muscle cells are important components of end-bulbs.
Assuntos
Proteínas de Drosophila , Drosophila , Animais , Linhagem da Célula , Asas de Animais , Drosophila melanogaster/fisiologiaRESUMO
Lipids are either taken up from food sources or produced internally in specialized tissues such as the liver. Among others, both routes of lipid metabolism involve cytochrome P450 monooxygenases (CYPs). We sought to analyze the function of Cyp311a1 that has been shown to be expressed in the midgut of the fruit fly Drosophila melanogaster. Using a GFP-tagged version of CYP311A1 that is expressed under the control of its endogenous promoter, we show that Cyp311a1 localizes to the endoplasmic reticulum in epithelial cells of the anterior midgut. In larvae with reduced Cyp311a1 expression in the anterior midgut, compared to control larvae, the apical plasma membrane of the respective epithelial cells contains less and shorter microvilli. In addition, we observed reduction of neutral lipids in the fat body, the insect liver, and decreased phosphatidylethanolamine (PE) and triacylglycerols (TAG) amounts in the whole body of these larvae. Probably as a consequence, they cease to grow and eventually die. The microvillus defects in larvae with reduced Cyp311a1 expression are restored by supplying PE, a major phospholipid of plasma membranes, to the food. Moreover, the growth arrest phenotype of these larvae is partially rescued. Together, these results suggest that the anterior midgut is an import hub in lipid distribution and that the midgut-specific CYP311A1 contributes to this function by participating in shaping microvilli in a PE-dependent manner.
Assuntos
Drosophila melanogaster , Lipídeos , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Larva , MicrovilosidadesRESUMO
The control of organ growth is a fundamental aspect of animal development but remains poorly understood. The morphogen Dpp has long been considered as a general promoter of cell proliferation during Drosophila wing development. It is an ongoing debate whether the Dpp gradient is required for the uniform cell proliferation observed in the wing imaginal disc. Here, we investigated how the Dpp signaling pathway regulates proliferation during wing development. By systematic manipulation of Dpp signaling we observed that it controls proliferation in a region-specific manner: Dpp, via omb, promoted proliferation in the lateral and repressed proliferation in the medial wing disc. Omb controlled the regional proliferation rate by oppositely regulating transcription of the microRNA gene bantam in medial versus lateral wing disc. However, neither the Dpp nor Omb gradient was essential for uniform proliferation along the anteroposterior axis.
Assuntos
Proliferação de Células , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Proteínas com Domínio T/metabolismo , Animais , Padronização Corporal , Drosophila/citologia , Drosophila/crescimento & desenvolvimento , Asas de Animais/citologia , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismoRESUMO
Oedaleus asiaticus is a highly destructive grass pest in Inner Mongolia, China, and likely developed resistance to pyrethroid insecticides due to their frequent application for control of this locust. In this study, the susceptibility of five field populations of O. asiaticus to two pyrethroid insecticides was investigated. The Wulate Middle Banner (WB) population was the least susceptible, whereas the Ewenki Banner (EB) population appeared to be the most sensitive. The WB population was 3.16 and 5.15-fold less sensitive to beta-cypermethrin and deltamethrin than EB population, respectively. Further, the enzyme activities and mRNA expression levels of carboxylesterase (CarE) and glutathione-S-transferase (GST) were determined and we found that their activities in the WB population were 5.15 and 2.8-fold higher than those in the EB population, respectively. Quantitative real-time PCR (qRT-PCR) analysis demonstrated that the mRNA expression levels of CarE and GST genes were positively correlated with the LD50 in the WB, Siziwang Banner (SB) and EB populations. Our findings suggest that differences in susceptibility to pyrethroids in O. asiaticus might be attributed to the elevated activities and mRNA expression levels of CarE and GST genes.
Assuntos
Gafanhotos/efeitos dos fármacos , Nitrilas/farmacologia , Piretrinas/farmacologia , Animais , Carboxilesterase/metabolismo , China , Glutationa Transferase/metabolismo , Resistência a InseticidasRESUMO
Accurate modelling of agricultural management impacts on greenhouse gas emissions and the cycling of carbon and nitrogen is complicated due to interactions between various processes and the disturbance caused by field management. In this study, a process-based model, the Soil-Plant-Atmosphere Continuum System (SPACSYS), was used to simulate the effects of different fertilisation regimes on crop yields, the dynamics of soil organic carbon (SOC) and total nitrogen (SN) stocks from 1990 to 2010, and soil CO2 (2007-2010) and N2O (2007-2008) emissions based on a long-term fertilisation experiment with a winter-wheat (Triticum Aestivum L.) and summer-maize (Zea mays L.) intercropping system in Eutric Cambisol (FAO) soil in southern China. Three fertilisation treatments were 1) unfertilised (Control), 2) chemical nitrogen, phosphorus and potassium (NPK), and 3) NPK plus pig manure (NPKM). Statistical analyses indicated that the SPACSYS model can reasonably simulate the yields of wheat and maize, the evolution of SOC and SN stocks and soil CO2 and N2O emissions. The simulations showed that the NPKM treatment had the highest values of crop yields, SOC and SN stocks, and soil CO2 and N2O emissions were the lowest from the Control treatment. Furthermore, the simulated results showed that manure amendment along with chemical fertiliser applications led to both C (1017 ± 470 kg C ha(-1) yr(-1)) and N gains (91.7 ± 15.1 kg N ha(-1) yr(-1)) in the plant-soil system, while the Control treatment caused a slight loss in C and N. In conclusion, the SPACSYS model can accurately simulate the processes of C and N as affected by various fertilisation treatments in the red soil. Furthermore, application of chemical fertilisers plus manure could be a suitable management for ensuring crop yield and sustaining soil fertility in the red soil region, but the ratio of chemical fertilisers to manure should be optimized to reduce C and N losses to the environment.
Assuntos
Fertilizantes , Efeito Estufa , Solo/química , Triticum , Zea mays , Agricultura/métodos , Animais , Carbono/análise , China , Produtos Agrícolas/crescimento & desenvolvimento , Meio Ambiente , Fertilizantes/análise , Efeito Estufa/estatística & dados numéricos , Esterco/análise , Modelos Teóricos , Nitrogênio/análise , Fósforo/análise , Potássio/análise , Suínos , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimentoRESUMO
Lipid homeostasis is crucial for growth and development of organisms. Several cytochrome P450 monooxygenases (CYPs) are involved in lipid metabolism. The function of Cyp311a1 in the anterior midgut as a regulator of phosphatidylethanolamine (PE) metabolism in Drosophila melanogaster has been demonstrated, as depletion of Cyp311a1 caused larval growth arrest that was partially rescued by supplying PE. In this study, we investigated the role of CYP311A1 in wing morphogenesis in Drosophila. Using the GAL4-UAS system, Cyp311a1 was selectively knocked down in the wing disc. A deformed wing phenotype was observed in flies with reduced Cyp311a1 transcripts. BODIPY and oil red O staining revealed a reduction of neutral lipids in the wing disc after the depletion of Cyp311a1. In addition, we observed an enhanced sensitivity to Eosin Y penetration in the wings of Cyp311a1 knocked-down flies. Moreover, the reduction of CYP311A1 function in developing wings does not affect cell proliferation and apoptosis, but entails disordered Phalloidin or Cadherin distribution, suggesting an abnormal cell morphology and cell cortex structure in wing epithelial cells. Taken together, our results suggest that Cyp311a1 is needed for wing morphogenesis by participating in lipid assembly and cell homeostasis.
Assuntos
Sistema Enzimático do Citocromo P-450 , Proteínas de Drosophila , Drosophila melanogaster , Asas de Animais , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Morfogênese , Larva/crescimento & desenvolvimento , Larva/genética , Larva/metabolismo , Metabolismo dos LipídeosRESUMO
To quickly calibrate the discrete element parameters (DEP) of pellets with different moisture content (MC), the angle of repose (AoR) was taken as the target value to conduct experimental and simulation research on gluten pellets. The experimental method obtained the intrinsic parameters, contact parameters, and AoR of pellets with different moisture content. The parameters differed significantly under different moisture content (p < 0.05). The AoR-MC model (R2 = 0.987) was established. The Plackett-Burman test, steepest ascent test, and center compound test were carried out to establish the AoR-DEP model (R2 = 0.969) with a relative error less than or equal to 2.07%. The MC-DEP model was derived, and verified by the side plate lifting method with a relative error less than or equal to 2.58%. This paper provides a new method for calibrating DEP under different moisture content.
Assuntos
CalibragemRESUMO
Potassium sorbate (PS) is a preservative widely used in the food, pharmaceutical, and cosmetics industries. Improper and careless use of PS can lead to various health issues and potential environmental problems. Drosophila is capable of making rapid and sensitive responses to stress or other stimuli. Here we utilized Drosophila as a model organism to evaluate the potential toxicity of PS. Our study revealed that PS ingestion reduced the lifespan and fecundity of Drosophila. In addition, excessive PS ingestion led to cell apoptosis and ROS accumulation in the midgut. Furthermore, PS intake also enhanced the mitophagy of midgut cells. Strikingly, PS affected the cell differentiation progression as well, leading to the production of more enteroendocrine (EE) cells. We further demonstrated that the expression of notch (N), a vital player in intestinal stem cell (ISC) differentiation, was down-regulated in the midgut. This indicates that the differentiation progression was affected potentially by repressing the N expression.
RESUMO
Glypicans are closely associated with organ development and tumorigenesis in animals. Dally-like (Dlp), a membrane-bound glypican, plays pivotal roles in various biological processes in Drosophila. In this study, we observed that an excess of Dlp led to the malformation of legs, particularly affecting the distal part. Accordingly, the leg disc was shrunken and frequently exhibited aberrant morphology. In addition, elevated Dlp levels induced ectopic cell death with no apparent cell proliferation changes. Furthermore, Dlp overexpression in the posterior compartment significantly altered Wingless (Wg) distribution. We observed a marked expansion of Wg distribution within the posterior compartment, accompanied by a corresponding decrease in the anterior compartment. It appears that excess Dlp guides Wg to diffuse to cells with higher Dlp levels. In addition, the distal-less (dll) gene, which is crucial for leg patterning, was up-regulated significantly. Notably, dachshund (dac) and homothorax (hth) expression, also essential for leg patterning and development, only appeared to be negligibly affected. Based on these findings, we speculate that excess Dlp may contribute to malformations of the distal leg region of Drosophila, possibly through its influence on Wg distribution, dll expression and induced cell death. Our research advances the understanding of Dlp function in Drosophila leg development.
Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Extremidades/patologia , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genéticaRESUMO
The dynamic adhesion between cells and their extracellular matrix is essential for the development and function of organs. During insect wing development, two epithelial sheets contact each other at their basal sites through the interaction of ßPS integrins with the extracellular matrix. We report that Osiris17 contributes to the maintenance of ßPS integrins localization and function in developing wing of Drosophila and locust. In flies with reduced Osiris17 expression the epithelia sheets fail to maintain the integrity of basal cytoplasmic junctional bridges and basal adhesion. In contrast to the continuous basal integrin localization in control wings, this localization is disrupted during late stages of wing development in Osiris17 depleted flies. In addition, the subcellular localization revealed that Osiris17 co-localizes with the endosomal markers Rab5 and Rab11. This observation suggests an involvement of Osiris17 in endosomal recycling of integrins. Indeed, Osiris17 depletion reduced the numbers of Rab5 and Rab11 positive endosomes. Moreover, overexpression of Osiris17 increased co-localization of Rab5 and ßPS integrins and partially rescued the detachment phenotype in flies with reduced ßPS integrins. Taken together, our data suggest that Osiris17 is an endosome related protein that contributes to epithelial remodeling and morphogenesis by assisting basal integrins localization in insects.
Assuntos
Proteínas de Drosophila , Integrinas , Animais , Integrinas/metabolismo , Drosophila/genética , Epitélio/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Matriz Extracelular/metabolismoRESUMO
The Drosophila hindgut is a classical model to study organogenesis. The adult hindgut originates from the precursor cells in the larval hindgut. However, the territory of these cells has still not been well determined. A ring of wingless (wg)-expressing cells lies at the anterior zone of both the larval and adult hindgut. The larval Wg ring was thought as a portion of precursor of the adult hindgut. By applying a cell lineage tracing tool (G-TRACE), we demonstrate that larval wg-expressing cells have no cell lineage contribution to the adult hindgut. Additionally, adult Wg ring cells do not divide and move posteriorly to replenish the hindgut tissue. Instead, we determine that the precursors of the adult pylorus and ileum are situated in the cubitus interruptus (ci)-expressing cells in the anterior zone, and deduce that the precursor stem cells of the adult rectum locate in the trunk region of the larval pylorus including hedgehog (hh)-expressing cells. Together, this research advances our understanding of cell lineage origins and the development of the Drosophila hindgut.
Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Larva/genética , Larva/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteína Wnt1 , Proteínas Hedgehog/genética , Regulação da Expressão Gênica no DesenvolvimentoRESUMO
Antlion larvae of Cueta sauteri (Esben-Petersen) and Myrmeleon bore (Tjeder) from mainland China were collected in the field and reared to adults in the laboratory. Larval morphology of each species was described and complemented with behavioral observations. Their most important diagnostic characteristics are head capsule markings, mandibular length, mandibular teeth length, distance between mandibular teeth, bristle number between the distal mandibular tooth and apex of the mandible, morphology of labial palpi and antennae, peduncle of mesothoracic spiracle and the arrangement of digging bristles. Larvae of these two species construct similar conical pits and wait for prey at the bottom of the traps.
Assuntos
Insetos/classificação , Estruturas Animais/anatomia & histologia , Animais , China , Comportamento Alimentar , Feminino , Insetos/anatomia & histologia , Insetos/crescimento & desenvolvimento , Insetos/fisiologia , Larva/anatomia & histologia , Larva/classificação , Larva/crescimento & desenvolvimento , Larva/fisiologia , MasculinoRESUMO
Mechanical metamaterials are meticulously designed structures with exceptional mechanical properties determined by their microstructures and constituent materials. Tailoring their material and geometric distribution unlocks the potential to achieve unprecedented bulk properties and functions. However, current mechanical metamaterial design considerably relies on experienced designers' inspiration through trial and error, while investigating their mechanical properties and responses entails time-consuming mechanical testing or computationally expensive simulations. Nevertheless, recent advancements in deep learning have revolutionized the design process of mechanical metamaterials, enabling property prediction and geometry generation without prior knowledge. Furthermore, deep generative models can transform conventional forward design into inverse design. Many recent studies on the implementation of deep learning in mechanical metamaterials are highly specialized, and their pros and cons may not be immediately evident. This critical review provides a comprehensive overview of the capabilities of deep learning in property prediction, geometry generation, and inverse design of mechanical metamaterials. Additionally, this review highlights the potential of leveraging deep learning to create universally applicable datasets, intelligently designed metamaterials, and material intelligence. This article is expected to be valuable not only to researchers working on mechanical metamaterials but also those in the field of materials informatics.
RESUMO
Water input budget of global oceanic lithosphere at different tectonic settings are quantitatively estimated. The results indicate that the hydration at subduction zone is fundamentally essential to plate dynamics and water cycle of the Earth.
RESUMO
In wastewater treatment plants (WWTPs), external carbon sources are often required due to low C/N influent. However, the use of external carbon sources can increase treatment costs and cause large carbon emissions. Beer wastewater, which contains a substantial amount of carbon, is often treated separately in China, consuming significant energy and cost. However, most studies using beer wastewater as an external carbon source are still on a laboratory scale. To address this issue, this study proposes using beer wastewater as an external carbon source in an actual WWTP to reduce operating costs and carbon emissions while achieving a win-win situation. The denitrification rate of beer wastewater was found to be higher than that of sodium acetate , resulting in improved treatment efficiency of the WWTP. Specifically, COD, BOD5, TN, NH4+-N and TP increased by 3.4%, 1.6%, 10.8%, 1.1%, and 1.7%, respectively. Additionally, the treatment cost and carbon emission per 10 000 tons of wastewater treated were reduced by 537.31 yuan and 2.27 t CO2, respectively. These results indicate that beer wastewater has significant utilization potential and provide a reference for using different types of production wastewater in WWTPs. This study's findings demonstrate the feasibility of implementing this approach in an actual WWTP setting.
RESUMO
Group I chitin deacetylases (CDAs), CDA1 and CDA2, play an essential role in cuticle formation and molting in the process of insect wing development. A recent report showed that trachea are able to take up a secreted CDA1 (serpentine, serp) produced in the fat body to support normal tracheal development in the fruit fly Drosophila melanogaster. However, whether CDAs in wing tissue were produced locally or derived from the fat body remains an open question. To address this question, we applied tissue-specific RNAi against DmCDA1 (serpentine, serp) and DmCDA2 (vermiform, verm) in the fat body or the wing and analyzed the resulting phenotypes. We found that repression of serp and verm in the fat body had no effect on wing morphogenesis. RT-qPCR showed that RNAi against serp or verm in the fat body autonomously reduced their expression levels of serp or verm in the fat body but had no non-autonomous effect on the expression in wings. Furthermore, we showed that inhibition of serp or verm in the developing wing caused wing morphology and permeability deficiency. Taken together, the production of Serp and Verm in the wing was autonomous and independent of the fat body.
RESUMO
Water is the most common volatile component inside the Earth. A substantial amount of water can be carried down to the interior of the Earth by subducting plates. However, how the subducted water evolves after the subducting slab breaks off remains poorly understood. Here we use the data from a passive seismic experiment using ocean bottom seismometers (OBSs) together with the land stations to determine the high-resolution, three-dimensional seismic structure of the Southwest Sub-basin (SWSB) of the South China Sea (SCS). At depths below 40 km, the mantle shear velocity (Vsv) beneath the northern side of the SWSB is similar to that of the conventional oceanic pyrolite mantle, but roughly 3% shear-velocity reduction is found beneath the southern side of the SWSB. Results of thermal dynamic modeling reveal that the observed shear-velocity reduction could be explained by the presence of 150-300 ppm of water and 5-10% of lower continental crust. The inferred high-water content at the southern side of the SWSB is consistent with a model in which the Proto-SCS plate subducted southward prior to and during the formation of the SCS basin, releasing water into the upper mantle of the SWSB.
RESUMO
Astragali Radix is the dry root of the leguminous plants Astragalus membranaceus (Fisch.) Bge. Var. mongholicus (Bge.) Hsiao and A. membranaceus (Fisch.) Bge. Astragali Radix is mostly used clinically as a decoction. A number of pharmacological studies show that Astragalus extract can increase telomerase activity and has antioxidation, anti-inflammatory, immune regulation, anticancer, lowering blood lipid, lowering blood sugar, and other effects. However, the anti-aging mechanism of aqueous extract from Astragali Radix (ARE) is still unclear. In this study, we evaluated the anti-aging effect of ARE on Drosophila melanogaster and investigated the underlying mechanism. The results of life span assay showed that 1.25 mg/mL of ARE can significantly prolong the life span of D. melanogaster in a natural aging model and protect against H2O2 and paraquat. Meanwhile, ARE can improve the climbing ability and food intake of flies. Metabolomics and the glutamate content assay suggested that ARE prevented an age-dependent increase in glutamate levels in D. melanogaster. Furthermore, ARE showed a dose-dependent effect on the scavenging ability of α, α-diphenyl-ß-picrylhydrazyl in vitro. Superoxide dismutase and catalase activities in the aging group also increased after the intervention of ARE. The data and the findings described here support the notion that ARE may play a preventive role in aging by improving the climbing ability, eliminating harmful free radicals accumulated in D. melanogaster and triggering antioxidant responses.
Assuntos
Astragalus propinquus , Drosophila melanogaster , Envelhecimento , Animais , Antioxidantes/farmacologia , Glutamatos , Peróxido de HidrogênioRESUMO
Information on the spatial distribution of soil microbial communities on the Tibetan Pla-teau is critical for in-depth understanding the important roles of microbes in typical alpine ecosystems. In this study, 16S rDNA Illumina Miseq sequencing was used to analyze the variations in bacterial community composition and functional potentials in soils sampled from four elevations on Mount Segrila, Tibet, and the driving environmental factors. Results showed that richness and Shannon diversity index of soil bacteria significantly decreased with increasing altitude. The relative abundances of Acidobacteria, Chloroflexi, Gemmatimonadetes, and Nitrospirae significantly increased, whereas that of Proteobacteria, Actinobacteria and Bacteroidetes significantly decreased with increasing altitude. In KEGG pathway (level â ¡), the relative abundance of genes related to membrane transport and the metabolism of amino acids, lipids, terpenoids and polyketones was significantly lower at high elevations. In contrast, genes related to carbohydrates metabolism, signal transduction, replication and repair and enzyme family were more abundant at high altitudes. Soil bacterial community composition and predicted functions were significantly affected by vegetation types and soil properties, with soil pH being the key driver. There were significant correlations between the abundances of predicted functions and bacterial taxa, such as Acitnobacteria, Bacteroidetes, and Fibrobacteres. The dissimilarity in the composition of KEGG pathway genes along the elevational gradient (ß-diversity) showed a significantly positive correlation with the dissimilarity in bacterial community structure, indicating that there was a strong relationship between microbial community composition and potential functionality.