Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(11): 113401, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563934

RESUMO

We explore the dynamics of a tuneable box-trapped Bose gas under strong periodic forcing in the presence of weak disorder. In absence of interparticle interactions, the interplay of the drive and disorder results in an isotropic nonthermal momentum distribution that shows subdiffusive dynamic scaling, with sublinear energy growth and the universal scaling function captured well by a compressed exponential. We explain that this subdiffusion in momentum space can naturally be understood as a random walk in energy space. We also experimentally show that for increasing interaction strength, the gas behavior smoothly crosses over to wave turbulence characterized by a power-law momentum distribution, which opens new possibilities for systematic studies of the interplay of disorder and interactions in driven quantum systems.

2.
BMC Womens Health ; 24(1): 224, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582823

RESUMO

OBJECTIVE: Vaginal microbiota evaluation is a methodology widely used in China to diagnose various vaginal inflammatory diseases. Although vaginal microbiota evaluation has many advantages, it is time-consuming and requires highly skilled and experienced operators. Here, we investigated a six-index functional test that analyzed pH, hydrogen peroxide (H2O2), leukocyte esterase (LEU), sialidase (SNA), ß-glucuronidase (GUS), and acetylglucossidase (NAG), and determined its diagnostic value by comparing it with morphological tests of vaginal microbiota. MATERIALS AND METHODS: The research was conducted using data extracted from the Laboratory Information System of Women and Children's Hospital. A total of 4902 subjects, ranging in age from 35.4 ± 9.7 years, were analyzed. During the consultation, a minimum of two vaginal swab specimens per patient were collected for both functional and morphological testing. Fisher's exact was used to analyze data using SPSS. RESULTS: Of the 4,902 patients, 2,454 were considered to have normal Lactobacillus morphotypes and 3,334 were considered to have normal dominant microbiota. The sensitivity and specificity of H2O2-indicating Lactobacillus morphotypes were 91.3% and 25.28%, respectively, while those of pH-indicating Lactobacillus morphotypes were 88.09% and 59.52%, respectively. The sensitivity and specificity of H2O2-indicating dominant microbiota were 91.3% and 25.3%, respectively, while those of pH-indicating dominant microbiota were 86.27% and 64.45%, respectively. The sensitivity and specificity of NAG for vulvovaginal candidiasis were 40.64% and 84.8%, respectively. For aerobic vaginitis, GUS sensitivity was low at 0.52%, while its specificity was high at 99.93%; the LEU sensitivity and specificity values were 94.73% and 27.49%, respectively. Finally, SNA sensitivity and specificity for bacterial vaginosis were 80.72% and 96.78%, respectively. CONCLUSION: Functional tests (pH, SNA, H2O2, LEU) showed satisfactory sensitivity for the detection of vaginal inflammatory diseases. However, these tests lacked specificity, making it difficult to accurately identify specific pathologies. By contrast, NAG and GUS showed excellent specificity in identifying vaginal inflammatory diseases, but their sensitivity was limited. Therefore, functional tests alone are not sufficient to diagnose various vaginal inflammatory diseases. When functional and morphological tests are inconsistent, morphological tests are currently considered the preferred reference method.


Assuntos
Candidíase Vulvovaginal , Vaginose Bacteriana , Criança , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Peróxido de Hidrogênio , Vaginose Bacteriana/diagnóstico , Candidíase Vulvovaginal/diagnóstico , Candidíase Vulvovaginal/microbiologia , Vagina/microbiologia , Sensibilidade e Especificidade
3.
Plant J ; 109(4): 940-951, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34816537

RESUMO

Diosgenin is an important compound in the pharmaceutical industry and it is biosynthesized in several eudicot and monocot species, herein represented by fenugreek (a eudicot), and Dioscorea zingiberensis (a monocot). Formation of diosgenin can be achieved by the early C22,16-oxidations of cholesterol followed by a late C26-oxidation. This study reveals that, in both fenugreek and D. zingiberensis, the early C22,16-oxygenase(s) shows strict 22R-stereospecificity for hydroxylation of the substrates. Evidence against the recently proposed intermediacy of 16S,22S-dihydroxycholesterol in diosgenin biosynthesis was also found. Moreover, in contrast to the eudicot fenugreek, which utilizes a single multifunctional cytochrome P450 (TfCYP90B50) to perform the early C22,16-oxidations, the monocot D. zingiberensis has evolved two separate cytochrome P450 enzymes, with DzCYP90B71 being specific for the 22R-oxidation and DzCYP90G6 for the C16-oxidation. We suggest that the DzCYP90B71/DzCYP90G6 pair represent more broadly conserved catalysts for diosgenin biosynthesis in monocots.


Assuntos
Dioscorea/metabolismo , Diosgenina/metabolismo , Hidroxicolesteróis/metabolismo , Trigonella/metabolismo , Vias Biossintéticas , Colesterol , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação , Oxigenases/metabolismo , Extratos Vegetais
4.
BMC Plant Biol ; 23(1): 107, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814206

RESUMO

BACKGROUND: R2R3-MYB transcription factors regulate secondary metabolism, stress responses and development in various plants. Puerarin is a bioactive ingredient and most abundant secondary metabolite isolated from Pueraria lobata. The biosynthesis of puerarin proceeds via the phenylpropanoid pathway and isoflavonoids pathway, in which 9 key enzymes are involved. The expression of these structural genes is under control of specific PtR2R3-MYB genes in different plant tissues. However, how PtR2R3-MYB genes regulates structural genes in puerarin biosynthesis remains elusive. This study mined the PtR2R3-MYB genes involved in puerarin biosynthesis and response to hormone in Pueraria lobata var. thomsonii. RESULTS: A total of 209 PtR2R3-MYB proteins were identified, in which classified into 34 subgroups based on the phylogenetic topology and the classification of the R2R3-MYB superfamily in Arabidopsis thaliana. Furtherly physical and chemical characteristics, gene structure, and conserved motif analysis were also used to further analyze PtR2R3-MYBs. Combining puerarin content and RNA-seq data, speculated on the regulated puerarin biosynthesis of PtR2R3-MYB genes and structural genes, thus 21 PtR2R3-MYB genes and 25 structural genes were selected for validation gene expression and further explore its response to MeJA and GSH treatment by using qRT-PCR analysis technique. Correlation analysis and cis-acting element analysis revealed that 6 PtR2R3-MYB genes (PtMYB039, PtMYB057, PtMYB080, PtMYB109, PtMYB115 and PtMYB138) and 7 structural genes (PtHID2, PtHID9, PtIFS3, PtUGT069, PtUGT188, PtUGT286 and PtUGT297) were directly or indirectly regulation of puerarin biosynthesis in ZG11. It is worth noting that after MeJA and GSH treatment for 12-24 h, the expression changes of most candidate genes were consistent with the correlation of puerarin biosynthesis, which also shows that MeJA and GSH have the potential to mediate puerarin biosynthesis by regulating gene expression in ZG11. CONCLUSIONS: Overall, this study provides a comprehensive understanding of the PtR2R3-MYB and will paves the way to reveal the transcriptional regulation of puerarin biosynthesis and response to phytohormone of PtR2R3-MYB genes in Pueraria lobata var. thomsonii.


Assuntos
Arabidopsis , Pueraria , Genes myb , Pueraria/genética , Filogenia , Fatores de Transcrição/genética , Arabidopsis/genética , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
5.
J Chem Phys ; 158(3): 034201, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681638

RESUMO

Charge modulation microscopy (CMM) is an electro-optical method that is capable of mapping the spatial distribution of induced charges in an organic field-effect transistor (OFET). Here, we report a new (and simple) implementation of CMM in transmission geometry with camera-based imaging. A significant improvement in data acquisition speed (by at least an order of magnitude) has been achieved while preserving the spatial and spectral resolution. To demonstrate the capability of the system, we measured the spatial distribution of the induced charges in an OFET with a polymer blend of indacenodithiophene-co-benzothiadiazole and poly-vinylcarbazole that shows micrometer-scale phase separation. We were able to resolve spatial variations in the accumulated charge density on a length scale of 500 nm. We demonstrated through a careful spectral analysis that the measured signal is a genuine charge accumulation signal that is not dominated by optical artifacts.


Assuntos
Microscopia , Polímeros
6.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762378

RESUMO

The Physalis genus has long been used as traditional medicine in the treatment of various diseases. Physalins, the characteristic class of compounds in this genus, are major bioactive constituents. To date, the biogenesis of physalins remains largely unknown, except for the recently established knowledge that 24-methyldesmosterol is a precursor of physalin. To identify the genes encoding P450s that are putatively involved in converting 24-methyldesmosterol to physalins, a total of 306 P450-encoding unigenes were retrieved from our recently constructed P. angulata transcriptome. Extensive phylogenetic analysis proposed 21 P450s that might participate in physalin biosynthesis. To validate the candidates, we developed a virus-induced gene silencing (VIGS) system for P. angulata, and four P450 candidates were selected for the VIGS experiments. The reduction in the transcripts of the four P450 candidates by VIGS all led to decreased levels of physalin-class compounds in the P. angulata leaves. Thus, this study provides a number of P450 candidates that are likely associated with the biosynthesis of physalin-class compounds, forming a strong basis to reveal the unknown physalin biosynthetic pathway in the future.


Assuntos
Physalis , Physalis/genética , Filogenia , Medicina Tradicional , Folhas de Planta/genética , Transcriptoma
7.
Biomacromolecules ; 23(4): 1622-1632, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35104104

RESUMO

Antimicrobial materials are an urgent need for modern wound care in the clinic. Although traditional polyurethane foams have proven to be clinically valuable for wound treatment, their petroleum-originated preparation and bioinert nature have restricted their efficacy in biomedical applications. Here, we propose a simple one-step foaming method to prepare lignin-based polyurethane foams (LPUFs) in which fully biobased polyether polyols partially replace traditional petroleum-based raw materials. The trace amount of phenolic hydroxyl groups (about 4 mmol) in liquefied lignin acts as a direct reducing agent and capping agent to silver ions (less than 0.3 mmol), in situ forming silver nanoparticles (Ag NPs) within the LPUF skeleton. This newly proposed lignin polyurethane/Ag composite foam (named as Ag NP-LPUF) shows improved mechanical, thermal, and antibacterial properties. It is worth mentioning that the Ag NP-LPUF exhibits more than 99% antibacterial rate against Escherichia coli within 1 h and Staphylococcus aureus within 4 h. Evaluations in mice indicate that the antimicrobial composite foams can effectively promote wound healing of full-thickness skin defects. As a proof of concept, this antibacterial and biodegradable foam exhibits significant potential for clinical translation in wound care dressings.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Petróleo , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Escherichia coli , Lignina/farmacologia , Camundongos , Poliuretanos/farmacologia , Prata/farmacologia , Cicatrização
8.
Soft Matter ; 17(4): 815-825, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33411877

RESUMO

We report that the decompression of soft brittle materials can lead to the growth of internal gas-filled cracks. These cracks are oblate spheroids ('penny shape'), whose major radius grows linearly in time, irreversibly fracturing the surrounding material. Our optical measurements in hydrogels characterise and quantify the three-dimensional crack geometry and growth rate. These results are in good agreement with our analytical model coupling fracture mechanics and gas diffusion, and predicting the dependence on the mechanical properties, gas diffusivity and super-saturation conditions (gas pressure, solubility, temperature). Our results suggest a new potential mechanism for decompression sickness in scuba diving and for indirect optical measurements of the fracture properties of hydrogels.

9.
Plant J ; 93(1): 92-106, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29086444

RESUMO

Sesquiterpene lactones (STLs) are C15 terpenoid natural products with α-methylene γ-lactone moiety. A large proportion of STLs in Asteraceae species is derived from the central precursor germacrene A acid (GAA). Formation of the lactone rings depends on the regio-(C6 or C8) and stereoselective (α- or ß-)hydroxylations of GAA, producing STLs with four distinct stereo-configurations (12,6α-, 12,6ß-, 12,8α-, and 12,8ß-olide derivatives of GAA) in nature. Curiously, two configurations of STLs (C12,8α and C12,8ß) are simultaneously present in the Chinese medicinal plant, Inula hupehensis. However, how these related yet distinct STL stereo-isomers are co-synthesized in I. hupehensis remains unknown. Here, we describe the functional identification of the I. hupehensis cytochrome P450 (CYP71BL6) that can catalyze the hydroxylation of GAA in either 8α- or 8ß-configuration, resulting in the synthesis of both 8α- and 8ß-hydroxyl GAAs. Of these two products, only 8α-hydroxyl GAA spontaneously lactonizes to the C12,8α-STL while the 8ß-hydroxyl GAA remains stable without lactonization. Chemical structures of the C12,8α-STL, named inunolide, and 8ß-hydroxyl GAA were fully elucidated by nuclear magnetic resonance analysis and mass spectrometry. The CYP71BL6 displays 63-66% amino acid identity to the previously reported CYP71BL1/2 catalyzing GAA 6α- or 8ß-hydroxylation, indicating CYP71BL6 shares the same evolutionary lineage with other stereoselective cytochrome P450s, but catalyzes hydroxylation in a non-stereoselective manner. We observed that the CYP71BL6 transcript abundance correlates closely to the accumulation of C12,8-STLs in I. hupehensis. The identification of CYP71BL6 provides an insight into the biosynthesis of STLs in Asteraceae.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Inula/enzimologia , Sesquiterpenos de Germacrano/metabolismo , Sesquiterpenos/metabolismo , Catálise , Sistema Enzimático do Citocromo P-450/genética , Hidroxilação , Inula/genética , Inula/metabolismo , Lactonas/química , Lactonas/metabolismo , Oxirredução , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinais , Sesquiterpenos/química , Sesquiterpenos de Germacrano/química
10.
Molecules ; 24(1)2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609669

RESUMO

Trigonella foenum-graecum L. (fenugreek) is a valuable resource of producing diosgenin which serves as a substrate for synthesizing more than two hundred kinds of steroidal drugs. Phytochemical analysis indicated that methyl jasmonate (MeJA) efficiently induced diosgenin biosynthesis in fenugreek seedlings. Though early steps up to cholesterol have recently been elucidated in plants, cytochrome P450 (CYP)- and glycosyltransferase (GT)-encoding genes involved in the late steps from cholesterol to diosgenin remain unknown. This study established comparative fenugreek transcriptome datasets from the MeJA-treated seedlings and the corresponding control lines. Differential gene expression analysis identified a number of MeJA-induced CYP and GT candidate genes. Further gene expression pattern analysis across a different MeJA-treating time points, together with a phylogenetic analysis, suggested specific family members of CYPs and GTs that may participate in the late steps during diosgenin biosynthesis. MeJA-induced transcription factors (TFs) that may play regulatory roles in diosgenin biosynthesis were also discussed. This study provided a valuable genetic resource to functionally characterize the genes involved in diosgenin biosynthesis, which will push forward the production of diosgenin in microbial organisms using a promising synthetic biology strategy.


Assuntos
Diosgenina/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transcriptoma , Trigonella/genética , Trigonella/metabolismo , Biologia Computacional/métodos , Ontologia Genética , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Filogenia , Fatores de Transcrição , Trigonella/classificação
11.
Plant J ; 90(3): 535-546, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28207970

RESUMO

C-glycosyltransferases (CGTs) are important enzymes that are responsible for the synthesis of the C-glycosides of flavonoids and isoflavonoids. Flavonoid CGTs have been molecularly characterized from several plant species; however, to date, no gene encoding an isoflavonoid CGT has been reported from any plant species. A significant example of an isoflavonoid C-glycoside is puerarin, a compound that contributes to the major medicinal effects of Pueraria lobata. Little is known about the C-glucosylation that occurs during puerarin biosynthesis. One possible route for puerarin synthesis is via the C-glucosylation of daidzein. This study describes the molecular cloning and functional characterization of a novel glucosyltransferase (PlUGT43) from P. lobata. Biochemical analyses revealed that PlUGT43 possesses an activity for the C-glucosylation of daidzein to puerarin; it shows activity with the isoflavones daidzein and genistein, but displays no activity towards other potential acceptors, including flavonoids. To validate the in vivo function of PlUGT43, the PlUGT43 gene was over-expressed in soybean hairy roots that naturally synthesize daidzein but that do not produce puerarin. The expression of PlUGT43 led to the production of puerarin in the transgenic soybean hairy roots, confirming a role for PlUGT43 in puerarin biosynthesis.


Assuntos
Glicosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Pueraria/metabolismo , Glicosiltransferases/genética , Isoflavonas/metabolismo , Proteínas de Plantas/genética , Pueraria/genética
12.
Molecules ; 23(2)2018 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-29463020

RESUMO

Dioscorea zingiberensis is a perennial herb native to China. The rhizome of D. zingiberensis has long been used as a traditional Chinese medicine to treat rheumatic arthritis. Dioscin is the major bioactive ingredient conferring the medicinal property described in Chinese pharmacopoeia. Several previous studies have suggested cholesterol as the intermediate to the biosynthesis of dioscin, however, the biosynthetic steps to dioscin after cholesterol remain unknown. In this study, a comprehensive D. zingiberensis transcriptome derived from its leaf and rhizome was constructed. Based on the annotation using various public databases, all possible enzymes in the biosynthetic steps to cholesterol were identified. In the late steps beyond cholesterol, cholesterol undergoes site-specific oxidation by cytochrome P450s (CYPs) and glycosylation by UDP-glycosyltransferases (UGTs) to yield dioscin. From the D. zingiberensis transcriptome, a total of 485 unigenes were annotated as CYPs and 195 unigenes with a sequence length above 1000 bp were annotated as UGTs. Transcriptomic comparison revealed 165 CYP annotated unigenes correlating to dioscin biosynthesis in the plant. Further phylogenetic analysis suggested that among those CYP candidates four of them would be the most likely candidates involved in the biosynthetic steps from cholesterol to dioscin. Additionally, from the UGT annotated unigenes, six of them were annotated as 3-O-UGTs and two of them were annotated as rhamnosyltransferases, which consisted of potential UGT candidates involved in dioscin biosynthesis. To further explore the function of the UGT candidates, two 3-O-UGT candidates, named Dz3GT1 and Dz3GT2, were cloned and functionally characterized. Both Dz3GT1 and Dz3GT2 were able to catalyze a C3-glucosylation activity on diosgenin. In conclusion, this study will facilitate our understanding of dioscin biosynthesis pathway and provides a basis for further mining the genes involved in dioscin biosynthesis.


Assuntos
Dioscorea/genética , Diosgenina/análogos & derivados , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , China , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Dioscorea/química , Diosgenina/química , Diosgenina/metabolismo , Anotação de Sequência Molecular , Filogenia , Rizoma/genética
13.
Biofouling ; 33(10): 819-834, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28980835

RESUMO

Predictions of added resistance and the effective power of ships were made for varying barnacle fouling conditions. A series of towing tests was carried out using flat plates covered with artificial barnacles. The tests were designed to allow the examination of the effects of barnacle height and percentage coverage on the resistance and effective power of ships. The drag coefficients and roughness function values were evaluated for the flat plates. The roughness effects of the fouling conditions on the ships' frictional resistances were predicted. Added resistance diagrams were then plotted using these predictions, and powering penalties for these ships were calculated using the diagrams generated. The results indicate that the effect of barnacle size is significant, since a 10% coverage of barnacles each 5 mm in height caused a similar level of added power requirements to a 50% coverage of barnacles each 1.25 mm in height.


Assuntos
Incrustação Biológica , Navios , Thoracica/fisiologia , Animais , Conservação de Recursos Energéticos , Fricção
14.
Plant Cell Physiol ; 57(3): 630-41, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26858282

RESUMO

Xanthium strumarium synthesizes various pharmacologically active sesquiterpenes. The molecular characterization of sesquiterpene biosynthesis in X. strumarium has not been reported so far. In this study, the cDNAs coding for three sesquiterpene synthases (designated as XsTPS1, XsTPS2 and XsTPS3) were isolated using the X. strumarium transcriptome that we recently constructed. XsTPS1, XsTPS2 and XsTPS3 were revealed to have primary activities forming germacrene D, guaia-4,6-diene and germacrene A, respectively, by either ectopic expression in yeast cells or purified recombinant protein-based in vitro assays. Quantitative real-time PCRs and metabolite analysis for the different plant parts showed that the transcript abundance of XsTPS1-XsTPS3 is consistent with the accumulation pattern of their enzymatic products, supporting their biochemical functions in vivo. In particular, we discovered that none of the XsTPS2 product, guaia-4,6-diene, can be detected in one of the X. strumarium cultivars used in this study (it was named the Hubei-cultivar), in which a natural deletion of two A bases in the XsTPS2 cDNA disrupts its activity, which further confirmed the proposed biochemical role of XsTPS2 in X. strumarium in vivo.


Assuntos
Alquil e Aril Transferases/metabolismo , Sesquiterpenos/metabolismo , Xanthium/enzimologia , Vias Biossintéticas , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Lactonas/química , Lactonas/metabolismo , Mutação/genética , Filogenia , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Análise de Sequência de Proteína , Sesquiterpenos/química , Xanthium/genética
15.
BMC Biotechnol ; 16(1): 59, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27534392

RESUMO

BACKGROUND: Betulinic acid (BA) is a lupane-type triterpene which has been considered as a promising agent to cure melanoma with no side effects. Considering that BA is naturally produced in small quantities in plants, we previously reported the success in engineering its production in yeast. In the present study, we attempted to improve BA biosynthesis in yeast by the use of different strategies. RESULTS: We first isolated a gene encoding a lupeol C-28 oxidase (LO) from Betula platyphylla (designated as BPLO). BPLO showed a higher activity in BA biosynthesis compared to the previously reported LOs. In addition, two yeast platforms were compared for engineering the production of BA, which demonstrated that the WAT11 strain was better to host BA pathway than the CEN.PK strain. Based on the WAT11-chassiss, the Gal80p mutant was further constructed. The mutant produced 0.16 mg/L/OD600 of BA, which was 2.2 fold of that produced by the wild type strain (0.07 mg/L/OD600). CONCLUSIONS: This study reported our efforts to improve BA production in yeast employing multiple strategies, which included the identification of a novel LO enzyme with a higher activity in BA biosynthesis, the evaluation of two yeast strains for hosting the BA pathway, and the up-regulation of the expression of the BA pathway genes by managing yeast GAL gene regulon circuit.


Assuntos
Galactose/genética , Melhoramento Genético/métodos , Engenharia Metabólica/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Triterpenos/metabolismo , Galactose/metabolismo , Glucose/metabolismo , Triterpenos Pentacíclicos , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Triterpenos/isolamento & purificação , Ácido Betulínico
17.
J Synchrotron Radiat ; 22(2): 366-75, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25723938

RESUMO

This paper describes the quantitative measurement, by in situ synchrotron X-ray diffraction (S-XRD) and subsequent Rietveld-based quantitative phase analysis and thickness calculations, of the evolution of the PbO2 and PbSO4 surface layers formed on a pure lead anode under simulated copper electrowinning conditions in a 1.6 M H2SO4 electrolyte at 318 K. This is the first report of a truly in situ S-XRD study of the surface layer evolution on a Pb substrate under cycles of galvanostatic and power interruption conditions, of key interest to the mining, solvent extraction and lead acid battery communities. The design of a novel reflection geometry electrochemical flow cell is also described. The in situ S-XRD results show that ß-PbO2 forms immediately on the anode under galvanostatic conditions, and undergoes continued growth until power interruption where it transforms to PbSO4. The kinetics of the ß-PbO2 to PbSO4 conversion decrease as the number of cycles increases, whilst the amount of residual PbO2 increases with the number of cycles due to incomplete conversion to PbSO4. Conversely, complete transformation of PbSO4 to ß-PbO2 was observed in each cycle. The results of layer thickness calculations demonstrate a significant volume change upon PbSO4 to ß-PbO2 transformation.

18.
Plant Physiol ; 165(3): 1367-1379, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24834923

RESUMO

The cysteine2/histidine2-type zinc finger proteins are a large family of transcription regulators, and some of them play essential roles in plant responses to biotic and abiotic stress. In this study, we found that expression of C2H2-type ZINC FINGER OF ARABIDOPSIS THALIANA6 (AtZAT6) was transcriptionally induced by salt, dehydration, cold stress treatments, and pathogen infection, and AtZAT6 was predominantly located in the nucleus. AtZAT6-overexpressing plants exhibited improved resistance to pathogen infection, salt, drought, and freezing stresses, while AtZAT6 knockdown plants showed decreased stress resistance. AtZAT6 positively modulates expression levels of stress-related genes by directly binding to the TACAAT motifs in the promoter region of pathogen-related genes (ENHANCED DISEASE SUSCEPTIBILITY1, PHYTOALEXIN DEFICIENT4, PATHOGENESIS-RELATED GENE1 [PR1], PR2, and PR5) and abiotic stress-responsive genes (C-REPEAT-BINDING FACTOR1 [CBF1], CBF2, and CBF3). Moreover, overexpression of AtZAT6 exhibited pleiotrophic phenotypes with curly leaves and small-sized plant at vegetative stage and reduced size of floral organs and siliques at the reproductive stage. Modulation of AtZAT6 also positively regulates the accumulation of salicylic acid and reactive oxygen species (hydrogen peroxide and superoxide radical). Taken together, our findings indicated that AtZAT6 plays important roles in plant development and positively modulates biotic and abiotic stress resistance by activating the expression levels of salicylic acid-related genes and CBF genes.

19.
Plant Cell Rep ; 34(5): 733-43, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25547742

RESUMO

KEY MESSAGE: Using Illumina sequencing technology, we have generated the large-scale transcriptome sequencing data and indentified many putative genes involved in isoflavones biosynthesis in Pueraria lobata. Pueraria lobata, a member of the Leguminosae family, is a traditional Chinese herb which has been used since ancient times. P. lobata root has extensive clinical usages, because it contains a rich source of isoflavones, including daidzin and puerarin. However, the knowledge of isoflavone metabolism and the characterization of corresponding genes in such a pathway remain largely unknown. In this study, de novo transcriptome of P. lobata root and leaf was sequenced using the Solexa sequencing platform. Over 140 million high-quality reads were assembled into 163,625 unigenes, of which about 43.1% were aligned to the Nr protein database. Using the RPKM (reads per kilo bases per million reads) method, 3,148 unigenes were found to be upregulated, and 2,011 genes were downregulated in the leaf as compared to those in the root. Towards a further understanding of these differentially expressed genes, Gene ontology enrichment and metabolic pathway enrichment analyses were performed. Based on these results, 47 novel structural genes were identified in the biosynthesis of isoflavones. Also, 22 putative UDP glycosyltransferases and 45 O-methyltransferases unigenes were identified as the candidates most likely to be involved in the tailoring processes of isoflavonoid downstream pathway. Moreover, MYB transcription factors were analyzed, and 133 of them were found to have higher expression levels in the roots than in the leaves. In conclusion, the de novo transcriptome investigation of these unique transcripts provided an invaluable resource for the global discovery of functional genes related to isoflavones biosynthesis in P. lobata.


Assuntos
Isoflavonas/metabolismo , Proteínas de Plantas/genética , Pueraria/genética , Transcriptoma , Vias Biossintéticas , DNA Complementar/química , DNA Complementar/genética , DNA de Plantas/química , DNA de Plantas/genética , Perfilação da Expressão Gênica , Ontologia Genética , Glicosiltransferases/classificação , Glicosiltransferases/genética , Sequenciamento de Nucleotídeos em Larga Escala , Isoflavonas/química , Metiltransferases/classificação , Metiltransferases/genética , Dados de Sequência Molecular , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/classificação , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Pueraria/metabolismo , Análise de Sequência de DNA
20.
Appl Microbiol Biotechnol ; 98(7): 3081-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24389702

RESUMO

Betulinic acid is a plant-based triterpenoid that has been recognized for its antitumor and anti-HIV activities. The level of betulinic acid in its natural hosts is extremely low. In the present study, we constructed betulinic acid biosynthetic pathway in Saccharomyces cerevisiae by metabolic engineering. Given the betulinic acid forming pathways sharing the common substrate acetyl-CoA with fatty acid synthesis, the metabolic fluxes between the two pathways were varied by changing gene expressions, and their effects on betulinic acid production were investigated. We constructed nine S. cerevisiae strains representing nine combinations of the flux distributions between betulinic acid and fatty acid pathways. Our results demonstrated that it was possible to improve the betulinic acid production in S. cerevisiae while keeping a desirable growth phenotype by optimally balancing the carbon fluxes of the two pathways. Through modulating the expressions of the key genes on betulinic acid and fatty acid pathways, the difference in betulinic acid yield varied largely in the range of 0.01-1.92 mg L(-1) OD(-1). The metabolic engineering approach used in this study could be extended for synthesizing other triterpenoids in S. cerevisiae.


Assuntos
Vias Biossintéticas , Ácidos Graxos/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triterpenos/metabolismo , Fármacos Anti-HIV/metabolismo , Antineoplásicos/metabolismo , Expressão Gênica , Triterpenos Pentacíclicos , Ácido Betulínico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa