Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 599
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(32): e2302190120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523548

RESUMO

The paucity of investigations of carbon (C) dynamics through the soil profile with warming makes it challenging to evaluate the terrestrial C feedback to climate change. Soil microbes are important engines driving terrestrial biogeochemical cycles; their carbon use efficiency (CUE), defined as the proportion of metabolized organic C allocated to microbial biomass, is a key regulator controlling the fate of soil C. It has been theorized that microbial CUE should decline with warming; however, empirical evidence for this response is scarce, and data from deeper soils are particularly scarce. Here, based on soil samples from a whole-soil-profile warming experiment (0 to 1 m, +4 °C) and 18O tracing approach, we examined the vertical variation of microbial CUE and its response to ~3.3-y experimental warming in an alpine grassland on the Qinghai-Tibetan Plateau. Microbial CUE decreased with soil depth, a trend that was primarily controlled by soil C availability. However, warming had limited effects on microbial CUE regardless of soil depth. Similarly, warming had no significant effect on soil C availability, as characterized by extractable organic C, enzyme-based lignocellulose index, and lignin phenol-based ratios of vanillyls, syringyls, and cinnamyls. Collectively, our work suggests that short-term warming does not alter microbial CUE in either surface or deep soils, and emphasizes the regulatory role of soil C availability on microbial CUE.


Assuntos
Pradaria , Solo , Solo/química , Carbono/metabolismo , Microbiologia do Solo , Mudança Climática
2.
J Immunol ; 210(9): 1408-1418, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36971659

RESUMO

Complement receptor type 2 (CR2) is an important membrane molecule expressed on B cells and follicular dendritic cells. Human CR2 has been shown to play a critical role in bridging the innate complement-mediated immune response with adaptive immunity by binding complement component 3d (C3d). However, the chicken CR2 (chCR2) gene has not been identified or characterized. In this study, unannotated genes that contain short consensus repeat (SCR) domains were analyzed based on RNA sequencing data for chicken bursa lymphocytes, and a gene with >80% homology to CR2 from other bird species was obtained. The gene consisted of 370 aa and was much smaller than the human CR2 gene because 10-11 SCRs were missing. The gene was then demonstrated as a chCR2 that exhibited high binding activity to chicken C3d. Further studies revealed that chCR2 interacts with chicken C3d through a binding site in its SCR1-4 region. An anti-chCR2 mAb that recognizes the epitope 258CKEISCVFPEVQ269 was prepared. Based on the anti-chCR2 mAb, the flow cytometry and confocal laser scanning microscopy experiments confirmed that chCR2 was expressed on the surface of bursal B lymphocytes and DT40 cells. Immunohistochemistry and quantitative PCR analyses further indicated that chCR2 is predominantly expressed in the spleen, bursa, and thymus, as well as in PBLs. Additionally, the expression of chCR2 varied according to the infectious bursal disease virus infection status. Collectively, this study identified and characterized chCR2 as a distinct immunological marker in chicken B cells.


Assuntos
Galinhas , Complemento C3d , Animais , Humanos , Complemento C3d/metabolismo , Receptores de Complemento 3d/metabolismo , Sítios de Ligação , Fatores Imunológicos , Receptores de Complemento
3.
Mol Ther ; 32(3): 749-765, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38310356

RESUMO

Approximately 80%-90% of hepatocellular carcinomas (HCC) occur in a premalignant environment of fibrosis and abnormal extracellular matrix (ECM), highlighting an essential role of ECM in the tumorigenesis and progress of HCC. However, the determinants of ECM in HCC are poorly defined. Here, we show that nuclear receptor RORγ is highly expressed and amplified in HCC tumors. RORγ functions as an essential activator of the matrisome program via directly driving the expression of major ECM genes in HCC cells. Elevated RORγ increases fibronectin-1 deposition, cell-matrix adhesion, and collagen production, creating a favorable microenvironment to boost liver cancer metastasis. Moreover, RORγ antagonists effectively inhibit tumor growth and metastasis in multiple HCC xenografts and immune-intact models, and they effectively sensitize HCC tumors to sorafenib therapy in mice. Notably, elevated RORγ expression is associated with ECM remodeling and metastasis in patients with HCC. Taken together, we identify RORγ as a key player of ECM remodeling in HCC and as an attractive therapeutic target for advanced HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Sorafenibe , Colágeno/metabolismo , Microambiente Tumoral
4.
Proc Natl Acad Sci U S A ; 119(36): e2120680119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35998224

RESUMO

The systemic immune response to viral infection is shaped by master transcription factors, such as NF-κB, STAT1, or PU.1. Although long noncoding RNAs (lncRNAs) have been suggested as important regulators of transcription factor activity, their contributions to the systemic immunopathologies observed during SARS-CoV-2 infection have remained unknown. Here, we employed a targeted single-cell RNA sequencing approach to reveal lncRNAs differentially expressed in blood leukocytes during severe COVID-19. Our results uncover the lncRNA PIRAT (PU.1-induced regulator of alarmin transcription) as a major PU.1 feedback-regulator in monocytes, governing the production of the alarmins S100A8/A9, key drivers of COVID-19 pathogenesis. Knockout and transgene expression, combined with chromatin-occupancy profiling, characterized PIRAT as a nuclear decoy RNA, keeping PU.1 from binding to alarmin promoters and promoting its binding to pseudogenes in naïve monocytes. NF-κB-dependent PIRAT down-regulation during COVID-19 consequently releases a transcriptional brake, fueling alarmin production. Alarmin expression is additionally enhanced by the up-regulation of the lncRNA LUCAT1, which promotes NF-κB-dependent gene expression at the expense of targets of the JAK-STAT pathway. Our results suggest a major role of nuclear noncoding RNA networks in systemic antiviral responses to SARS-CoV-2 in humans.


Assuntos
COVID-19 , Regulação da Expressão Gênica , Monócitos , RNA Longo não Codificante , SARS-CoV-2 , Alarminas/genética , COVID-19/genética , COVID-19/imunologia , Humanos , Janus Quinases/genética , Monócitos/imunologia , NF-kappa B/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA-Seq , SARS-CoV-2/imunologia , Fatores de Transcrição STAT/genética , Transdução de Sinais/genética , Análise de Célula Única
5.
Plant Mol Biol ; 114(1): 14, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324190

RESUMO

Excessive cadmium in rice grain in agricultural production is an important issue to be addressed in some southern regions of China. In this study, we constructed transgenic rice overexpressing OsVIT1 and OsVIT2 driven by 35S promoter in the cultivar ZH11. Compared with ZH11, OsVIT1 expression in leaves was significantly increased by 3-6.6 times and OsVIT2 expression in leaves was significantly increased by 2-2.5 times. Hydroponic experiments showed that overexpression of OsVIT1 and OsVIT2 increased the tolerance to Fe deficiency, significantly reduced Cd content in shoot and xylem sap, and had no effect on Cd tolerance in rice. Two years of field trials showed that the Fe content in the grain of OsVIT1 and OsVIT2 overexpressed materials was significantly reduced by 20-40% and the straw Fe content was significantly increased by 10-45%, and the grain Fe content distribution ratio was significantly decreased and the straw Fe distribution ratio was significantly increased compared with the wild type. The OsVIT1 and OsVIT2 overexpressed materials significantly reduced the Cd content of grain by 40-80% and the Cd content of straws by 37-77%, and the bioconcentration factor of Cd was significantly reduced in both grains and straw of OsVIT1 and OsVIT2 overexpressed materials. Overexpression of OsVIT1 and OsVIT2 did not affect the concentration of other metal ions in rice straw and grain. qRT-PCR analysis showed that the expression of the low affinity cation transporter OsLCT1 was significantly downregulated in the OsVIT1 and OsVIT2 overexpressed materials. In conclusion, overexpression of OsVIT1 and OsVIT2 reduced Cd accumulation in straw and grains, providing a strategy for Cd reduction in rice.


Assuntos
Cádmio , Oryza , Folhas de Planta , Agricultura , China , Grão Comestível , Proteínas de Membrana Transportadoras
6.
J Am Chem Soc ; 146(32): 22424-22430, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39087940

RESUMO

Amide alkylation is a fundamental process in organic chemistry. However, the low nucleophilicity of amides means that divergent coupling with alkyl electrophiles is often not achievable. To circumvent this reactivity challenge, individual amine synthesis followed by amidation with standard coupling agents is generally required. Herein, we demonstrate a radical solution to this challenge by using an amine-borane complex and copper catalysis under oxidative conditions. While borohydride reagents are generally used as reducing agents in ionic chemistry, their conversion into amine-ligated boryl radicals diverts their reactivity toward halogen-atom transfer. This enables the conversion of alkyl halides into the corresponding alkyl radicals for amide functionalization via copper catalysis. The process is applicable to the N-alkylation of primary amides employing unactivated alkyl iodides and bromides, and it was also showcased in the late-state functionalization of both complex amide- and halide-containing drugs.

7.
BMC Med ; 22(1): 278, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956533

RESUMO

BACKGROUND: APRI and FIB-4 scores are used to exclude clinically significant fibrosis (defined as stage ≥ F2) in patients with chronic viral hepatitis. However, the cut-offs for these scores (generated by Youden indices) vary between different patient cohorts. This study aimed to evaluate whether serum dithiothreitol-oxidizing capacity (DOC), i.e., a surrogate test of quiescin sulfhydryl oxidase-1, which is a matrix remodeling enzyme, could be used to non-invasively identify significant fibrosis in patients with various chronic liver diseases (CLDs). METHODS: Diagnostic performance of DOC was compared with APRI and FIB-4 for identifying significant fibrosis. ROC curve analyses were undertaken in: a) two chronic hepatitis B (CHB) cohorts, independently established from hospitals in Wenzhou (n = 208) and Hefei (n = 120); b) a MASLD cohort from Wenzhou hospital (n = 122); and c) a cohort with multiple CLD etiologies (except CHB and MASLD; n = 102), which was identified from patients in both hospitals. Cut-offs were calculated using the Youden index. All CLD patients (n = 552) were then stratified by age for ROC curve analyses and cut-off calculations. RESULTS: Stratified by CLD etiology or age, ROC curve analyses consistently showed that the DOC test was superior to APRI and FIB-4 for discriminating between clinically significant fibrosis and no fibrosis, when APRI and FIB-4 showed poor/modest diagnostic performance (P < 0.05, P < 0.01 and P < 0.001 in 3, 1 and 3 cohort comparisons, respectively). Conversely, the DOC test was equivalent to APRI and FIB-4 when all tests showed moderate/adequate diagnostic performances (P > 0.05 in 11 cohort comparisons). DOC had a significant advantage over APRI or FIB-4 scores for establishing a uniform cut-off independently of age and CLD etiology (coefficients of variation of DOC, APRI and FIB-4 cut-offs were 1.7%, 22.9% and 47.6% in cohorts stratified by CLD etiology, 2.0%, 26.7% and 29.5% in cohorts stratified by age, respectively). The uniform cut-off was 2.13, yielded from all patients examined. Surprisingly, the uniform cut-off was the same as the DOC upper limit of normal with a specificity of 99%, estimated from 275 healthy control individuals. Hence, the uniform cut-off should possess a high negative predictive value for excluding significant fibrosis in primary care settings. A high DOC cut-off with 97.5% specificity could be used for detecting significant fibrosis (≥ F2) with an acceptable positive predictive value (87.1%). CONCLUSIONS: This proof-of-concept study suggests that the DOC test may efficiently rule out and rule in significant liver fibrosis, thereby reducing the numbers of unnecessary liver biopsies. Moreover, the DOC test may be helpful for clinicians to exclude significant liver fibrosis in the general population.


Assuntos
Biomarcadores , Ditiotreitol , Cirrose Hepática , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/sangue , Masculino , Pessoa de Meia-Idade , Biomarcadores/sangue , Feminino , Adulto , Idoso , Oxirredução , Curva ROC , Estudos de Coortes , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/sangue , Estudo de Prova de Conceito
8.
Int J Med Microbiol ; 316: 151632, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39142057

RESUMO

The bacterial pathogen Staphylococcus aureus employs a thick cell wall for protection against physical and chemical insults. This wall requires continuous maintenance to ensure strength and barrier integrity, but also to permit bacterial growth and division. The main cell wall component is peptidoglycan. Accordingly, the bacteria produce so-called peptidoglycan hydrolases (PGHs) that cleave glycan strands to facilitate growth, cell wall remodelling, separation of divided cells and release of exported proteins into the extracellular milieu. A special class of PGHs contains so-called 'cysteine, histidine-dependent amidohydrolase/peptidase' (CHAP) domains. In the present study, we profiled the roles of 11 CHAP PGHs encoded by the core genome of S. aureus USA300 LAC. Mutant strains lacking individual CHAP PGHs were analysed for growth, cell morphology, autolysis, and invasion and replication inside human lung epithelial cells. The results show that several investigated CHAP PGHs contribute to different extents to extracellular and intracellular growth and replication of S. aureus, septation of dividing cells, daughter cell separation once the division process is completed, autolysis and biofilm formation. In particular, the CHAP PGHs Sle1 and SAUSA300_2253 control intracellular staphylococcal replication and the resistance to ß-lactam antibiotics like oxacillin. This makes the S. aureus PGHs in general, and the Sle1 and SAUSA300_2253 proteins in particular, attractive targets for future prophylactic or therapeutic anti-staphylococcal interventions. Alternatively, these cell surface-exposed enzymes, or particular domains of these enzymes, could be applied in innovative anti-staphylococcal therapies.


Assuntos
Proteínas de Bactérias , Parede Celular , N-Acetil-Muramil-L-Alanina Amidase , Staphylococcus aureus , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , Humanos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Staphylococcus aureus/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Peptidoglicano/metabolismo , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Células Epiteliais/microbiologia
9.
New Phytol ; 241(5): 2108-2123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38155438

RESUMO

Plants evolved sophisticated machineries to monitor levels of external nitrogen supply, respond to nitrogen demand from different tissues and integrate this information for coordinating its assimilation. Although roles of inorganic nitrogen in orchestrating developments have been studied in model plants and crops, systematic understanding of the origin and evolution of its assimilation and signaling machineries remains largely unknown. We expanded taxon samplings of algae and early-diverging land plants, covering all main lineages of Archaeplastida, and reconstructed the evolutionary history of core components involved in inorganic nitrogen assimilation and signaling. Most components associated with inorganic nitrogen assimilation were derived from the ancestral Archaeplastida. Improvements of assimilation machineries by gene duplications and horizontal gene transfers were evident during plant terrestrialization. Clusterization of genes encoding nitrate assimilation proteins might be an adaptive strategy for algae to cope with changeable nitrate availability in different habitats. Green plants evolved complex nitrate signaling machinery that was stepwise improved by domains shuffling and regulation co-option. Our study highlights innovations in inorganic nitrogen assimilation and signaling machineries, ranging from molecular modifications of proteins to genomic rearrangements, which shaped developmental and metabolic adaptations of plants to changeable nutrient availability in environments.


Assuntos
Nitratos , Nitrogênio , Nitratos/metabolismo , Nitrogênio/metabolismo , Transdução de Sinais , Produtos Agrícolas/metabolismo
10.
New Phytol ; 241(3): 1250-1265, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009305

RESUMO

Sugar transporter proteins (STPs) play critical roles in regulating plant stress tolerance, growth, and development. However, the role of STPs in regulating crop yield is poorly understood. This study elucidates the mechanism by which knockout of the sugar transporter OsSTP15 enhances grain yield via increasing the tiller number in rice. We found that OsSTP15 is specifically expressed in the shoot base and vascular bundle sheath of seedlings and encodes a plasma membrane-localized high-affinity glucose efflux transporter. OsSTP15 knockout enhanced sucrose and trehalose-6-phosphate (Tre6P) synthesis in leaves and improved sucrose transport to the shoot base by inducing the expression of sucrose transporters. Higher glucose, sucrose, and Tre6P contents were observed at the shoot base of stp15 plants. Transcriptome and metabolome analyses of the shoot base demonstrated that OsSTP15 knockout upregulated the expression of cytokinin (CK) synthesis- and signaling pathway-related genes and increased CK levels. These findings suggest that OsSTP15 knockout represses glucose export from the cytoplasm and simultaneously enhances sugar transport from source leaves to the shoot base by promoting the synthesis of sucrose and Tre6P in leaves. Subsequent accumulation of glucose, sucrose, and Tre6P in the shoot base promotes tillering by stimulating the CK signaling pathway.


Assuntos
Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Grão Comestível , Glucose/metabolismo , Sacarose/metabolismo , Açúcares/metabolismo
11.
New Phytol ; 242(2): 687-699, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396376

RESUMO

The effect of pathogens on host diversity has attracted much attention in recent years, yet how the influence of pathogens on individual plants scales up to affect community-level host diversity remains unclear. Here, we assessed the effects of foliar fungal pathogens on plant growth and species richness using allometric growth theory in population-level and community-level foliar fungal pathogen exclusion experiments. We calculated growth scaling exponents of 24 species to reveal the intraspecific size-dependent effects of foliar fungal pathogens on plant growth. We also calculated the intercepts to infer the growth rates of relatively larger conspecific individuals. We found that foliar fungal pathogens inhibited the growth of small conspecific individuals more than large individuals, resulting in a positive allometric growth. After foliar fungal pathogen exclusion, species-specific growth scaling exponents and intercepts decreased, but became positively related to species' relative abundance, providing a growth advantage for individuals of abundant species with a higher growth scaling exponent and intercept compared with rare species, and thus reduced species diversity. By adopting allometric growth theory, we elucidate the size-dependent mechanisms through which pathogens regulate species diversity and provide a powerful framework to incorporate antagonistic size-dependent processes in understanding species coexistence.


Assuntos
Fungos , Plantas , Plantas/microbiologia , Fungos/patogenicidade
12.
Plant Physiol ; 193(3): 1987-2002, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37527482

RESUMO

The vacuole is an important organelle for nitrate storage, and the reuse of vacuolar nitrate under nitrate starvation helps plants adapt to low-nitrate environments. CHLORIDE CHANNEL-b (CLC-b) in the vacuolar membrane is a nitrate transporter; however, its regulation and effects on nitrate efflux have not been established. Here, we evaluated CLC-b expression and its effects on physiological parameters under low nitrate conditions. CLC-b expression increased significantly in the roots of wild-type Arabidopsis (Arabidopsis thaliana) Col-0 under nitrate starvation. Under low nitrate, clcb mutants showed reductions in chlorophyll content and xylem sap nitrate concentration, shoot/root nitrate ratios, shoot/root total N ratios, and biomass. CLC-b-overexpression yielded opposite phenotypes and increased nitrogen use efficiency. CLC-b mutants showed elevated chlorate tolerance and an increased proportion of vacuolar nitrate relative to the total protoplast nitrate content as compared to the wild type. Yeast 1-hybrid, EMSA, and chromatin immunoprecipitation (ChIP) experiments showed that HRS1 HOMOLOG2 (HHO2), the expression of which is downregulated under low nitrate, binds directly to the promoter of CLC-b. clcb/hho2 double mutants and HHO2-overexpressing clcb plants had similar phenotypes under low nitrate to those of clcb single mutants. Thus, CLC-b mediates vacuolar nitrate efflux and is negatively regulated by HHO2, providing a theoretical basis for improving plant adaptability to low nitrate.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Vacúolos/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
13.
Glob Chang Biol ; 30(1): e17033, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273530

RESUMO

Global climate warming could affect the methane (CH4 ) and nitrous oxide (N2 O) fluxes between soils and the atmosphere, but how CH4 and N2 O fluxes respond to whole-soil warming is unclear. Here, we for the first time investigated the effects of whole-soil warming on CH4 and N2 O fluxes in an alpine grassland ecosystem on the Tibetan Plateau, and also studied the effects of experimental warming on CH4 and N2 O fluxes across terrestrial ecosystems through a global-scale meta-analysis. The whole-soil warming (0-100 cm, +4°C) significantly elevated soil N2 O emission by 101%, but had a minor effect on soil CH4 uptake. However, the meta-analysis revealed that experimental warming did not significantly alter CH4 and N2 O fluxes, and it may be that most field warming experiments could only heat the surface soils. Moreover, the warming-induced higher plant litter and available N in soils may be the main reason for the higher N2 O emission under whole-soil warming in the alpine grassland. We need to pay more attention to the long-term response of greenhouse gases (including CH4 and N2 O fluxes) from different soil depths to whole-soil warming over year-round, which could help us more accurately assess and predict the ecosystem-climate feedback under realistic warming scenarios in the future.


Assuntos
Ecossistema , Solo , Pradaria , Dióxido de Carbono/análise , Óxido Nitroso/análise , Metano
14.
Glob Chang Biol ; 30(9): e17487, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39254230

RESUMO

Subsoil is a large organic carbon reservoir, storing more than half of the total soil organic carbon (SOC) globally. Conventionally, subsoil is assumed to not be susceptible to climate change, but recent studies document that climate change could significantly alter subsoil carbon cycling. However, little is known about subsoil microbial responses to the interactive effects of climate warming and altered precipitation. Here, we investigated carbon cycling and associated microbial responses in both subsoil (30-40 cm) and topsoil (0-10 cm) in a Tibetan alpine grassland over 4 years of warming and altered precipitation. Compared to the unchanged topsoil carbon (ß = .55, p = .587), subsoil carbon exhibited a stronger response to the interactive effect of warming and altered precipitation (ß = 2.04, p = .021), that is, warming decreased subsoil carbon content by 28.20% under decreased precipitation while warming increased subsoil carbon content by 18.02% under increased precipitation.Furthermore, 512 metagenome-assembled genomes (MAGs) were recovered, including representatives of phyla with poor genomic representation. Compared to only one changed topsoil MAG, 16 subsoil MAGs were significantly affected by altered precipitation, and 5 subsoil MAGs were significantly affected by the interactive effect of warming and precipitation. More than twice as many populations whose MAG abundances correlated significantly with the variations of carbon content, components and fluxes were observed in the subsoil than topsoil, suggesting their potential contribution in mediating subsoil carbon cycling. Collectively, our findings highlight the more sensitive responses of specific microbial lineages to the interactive effects of warming and altered precipitation in the subsoil than topsoil, and provide key information for predicting subsoil carbon cycling under future climate change scenarios.


Assuntos
Ciclo do Carbono , Mudança Climática , Pradaria , Chuva , Microbiologia do Solo , Solo , Solo/química , Tibet , Carbono/análise , Carbono/metabolismo , Aquecimento Global , Bactérias/genética , Bactérias/classificação
15.
Mol Cell Biochem ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39085744

RESUMO

Brain metastasis (BM) in laryngeal squamous cell carcinoma (LSCC) is uncommon but prognosis is poor. Anti-PD-1 immunotherapy benefits some advanced LSCC cases, yet its efficiency is limited by tumor complexity. We analyzed paired metastatic tumor samples from before and after immunotherapy using single-cell RNA sequencing (scRNA-seq), along with a primary LSCC dataset and bulk RNA sequencing. This identified changes post-immunotherapy and revealed differences in single-cell transcriptomes among LSCC, primBM, and neoBM. Our findings show that anti-PD-1 treatment suppresses metastasis-promoting pathways like VEGF and EMT in cancer cells, and alters immune cell functions. Notably, it upregulates T cell activation, leading to CD8 T cell exhaustion from excess heat shock proteins, notably HSPA8. However, CD8 T cell cytotoxic functions improve post-treatment. In myeloid cells, anti-PD-1 therapy enhances antigen presentation and promotes a proinflammatory shift post-metastasis. Additionally, NUPR1 is linked to BM in LSCC, and NEAT1 is a potential metastatic cancer cell cycle participant. Our study provides insights into cancer heterogeneity and the impact of PD-1 immunotherapy on metastasis, aiding precise diagnosis and prognosis.

16.
Phys Chem Chem Phys ; 26(35): 22968-22981, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39171485

RESUMO

Metal-semiconductor heterojunctions are the basis for developing new electronic devices. Here, T(H)-TaS2/C3B metal-semiconductor heterostructures are constructed by different phase T- and H-TaS2 monolayers combined with the C3B monolayer. The calculated corrected binding energies, phonon band structures, elastic constants, and molecular dynamics simulations indicated that both heterojunctions are highly stable, meaning that T(H)-TaS2/C3B heterojunctions possibly exist in experiments. The electronic property calculations showed that the intrinsic T(H)-TaS2/C3B heterojunction is an n(p)-type Schottky contact with a low Schottky barrier height (SBH), which is very important for the design of high-performance field-effect transistors. The electronic properties of the T(H)-TaS2/C3B heterojunctions can be controlled by varying the vertical strain and external electric field; however, the strain only resulted in a small change in the heterojunction SBH. Nevertheless, under external electrical field control, the T-TaS2/C3B heterojunction could manage a transition from an n-type Schottky contact to an n-type Ohmic contact and the H-TaS2/C3B heterojunction could be altered from a p-type Schottky contact to a p-type Ohmic contact. These findings provide theoretical insights into the electronic and electrical contact properties of the T(H)-TaS2/C3B heterojunction, which could be beneficial for developing n-type MOS and p-type MOS transistors.

17.
Phys Chem Chem Phys ; 26(6): 5045-5058, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38258528

RESUMO

Recently, a magnetic semiconducting NiI2 monolayer was successfully fabricated. To obtain richer magneto-electronic properties and find new physics for NiI2, we studied the zigzag-type NiI2 nanoribbon (ZNiI2NR) with edges modified by different concentrations of H and/or O atoms. Results show that these ribbons hold a higher energy stability, thermal stability, and magnetic stability, and the Curie temperature can be increased to 143 from 15 K for the bare-edged ribbons. They feature a half-semiconductor, bipolar magnetic semiconductor, or half-metal, depending on the edge-terminated atomic species and concentrations, and are closely related to the ribbon edge states, impurity bands or hybridized bands. By applying strain or an electric field, ribbons can achieve a reversible multi-magnetic phase transition among a bipolar magnetic semiconductor, half-semiconductor, half-metal, and magnetic metal. This is because strain changes the Ni-I bond length, resulting in a variation of bond configurations (weight of ionic and covalent bonds) and the number of unpaired electrons. The compressive strain can increase the Curie temperature because it makes the edged Ni-I-Ni bond angle closer to 90°, leading to the FM d-p-d superexchange interaction being increased. The electric field varies the magnetic phase because it alters the electrostatic potential of the ribbon edges, and the Curie temperature is enhanced under the electric field because the ribbon is changed to a metallic state (half-metal or magnetic metal), in which the magnetic Ni atoms satisfy the Stoner criterion and hold a large magnetic exchange coefficient and electron state density at the Fermi surface.

18.
Phys Chem Chem Phys ; 26(5): 4218-4230, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38230672

RESUMO

Recently, single-layer PtSe2, possessing high carrier mobility and optical response, has been successfully fabricated. To further expand its application scope and find new physics, in this work, we functionalized it via the adsorption of non-metallic atoms X (X = H, B, C, N, O, and F) to form hybrid systems X-PtSe2, and their geometrical, mechanical, electronic, and optical properties as well as strain tuning effects were studied deeply. Calculations show that the energy stability of X-PtSe2 systems is significantly enhanced, and they also hold higher thermal and mechanical stability. Particularly, X-PtSe2 systems present excellent in-plane tenacity and out-of plane stiffness against deformations, which make them more applicable for designing nanodevices. Intrinsic PtSe2 is a semiconductor, while the X-PtSe2 system can be a band-gap narrowed semiconductor or metal, thus expanding the application scope for PtSe2, and the odd-even effect of electronic phase variation related to the atomic number is found. Besides, the wavelength range of optical adsorption is increased in X-PtSe2 systems, implying that its optical response region is wide, providing more options for developing optoelectronic devices. Moreover, it is shown that strain can flexibly tune the electronic property of X-PtSe2 systems, especially enhancing the optical absorption ability substantially, beneficial for their applications in solar devices.

19.
Phys Chem Chem Phys ; 26(27): 18865-18870, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38946600

RESUMO

Using gas phase Fourier-transform microwave spectroscopy complemented by theoretical analysis, this study delivers a comprehensive depiction of the physical origin of the 'n → π* interaction' between CO2 and acrolein, one of the most reactive aldehydes. Three distinct isomers of the acrolein-CO2 complex, linked through a C⋯O tetrel bond (or n → π* interaction) and a C-H⋯O hydrogen bond, have been unambiguously identified in the pulsed jet. Relative intensity measurements allowed estimation on the population ratio of the three isomers to be T1/T2/C1 ≈ 25/5/1. Advanced theoretical analyses were employed to elucidate the intricacies of the noncovalent interactions within the examined complex. This study not only sheds light on the molecular underpinnings of n → π* interactions but also paves the way for future exploration in carbon dioxide capture and utilization, leveraging the fundamental principles uncovered in the study of acrolein-carbon dioxide interactions.

20.
Environ Res ; 243: 117668, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38007082

RESUMO

In recent years, one of the most important and innovative policy initiatives introduced by the Chinese government in the field of environmental protection and ecological civilization construction is the Central Environmental Protection Inspection (CEPI). CEPI is seen as a vital tool to encourage local implementation of environmental protection responsibility. Over the course of its operation (eight years), CEPI has transformed from the "campaign" phase to the "convention" phase. It is noted that while provincial governments face a common high-pressure environment created by CEPI, governance scenarios, behaviors, and performance vary across the country significantly. To better understand local governments' environmental governance behaviors under the transformation of CEPI, an integrated analysis framework consisting of two key elements, "central dominance" and "local proactiveness", is constructed based on the central-local interactions under the principal-agent model. Based on this framework, we conducted a multi-case comparative analysis of four classic cases, with the following findings. (1) Along with the operation of CEPI and its transformation, the interaction between the central and local governments leads to four governance scenarios: "control-active cooperation", "control-passive cooperation", "guidance-active promotion", and "guidance-passive promotion". (2) Influenced by various factors such as pressure by the central government, local governments' capabilities and governance motivations, local governments form governance behaviors with varying degrees of proactiveness and autonomy. (3) After examining the governance performance of varying behaviors, it is found that local government's "active promotion" behavior can achieve higher governance effectiveness in the "convention" phase. Therefore, it is of policy implication that local governments should be guided to transit from "passive cooperation" to "active promotion". This paper has important guiding significance for understanding local environmental governance behaviors under strong top-down institutional pressure.


Assuntos
Conservação dos Recursos Naturais , Política Ambiental , China , Governo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa