Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Neurol ; 24(1): 140, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664672

RESUMO

BACKGROUND: In recent years, simultaneous or sequential occurrence of MOG antibody disease and anti-NMDAR encephalitis in the same patient has been reported with increasing frequency. Scholars refer to the overlapping occurrence of these two disorders as MOG antibody disease and anti-NMDAR encephalitis overlap syndrome (MNOS). Cortical T2-weighted fluid-attenuated inversion recovery (FLAIR) -hyperintense lesions in anti-MOG-associated encephalitis with seizures (FLAMES) is a rare clinical phenotype of MOGAD in which cortical FLAIR high-signal lesions are unilateral, with little spread to the cortex and meninges bilaterally. Although cases of FLAMES have been consistently reported. However, to our knowledge, such cases of FLAMES combined with NMDARE are rare. CASE PRESENTATION: Here, we describe a case of FLAMES combined with anti-NMDARE. The patient was a young male, 29 years old, admitted to our hospital with isolated seizures, whose MRI showed unilateral thalamic and bilateral frontal and parietal leptomeningeal involvement. Since we were unaware of the possibility of bilateral meningo-cortical MOGAD manifestations, the case was initially diagnosed as viral encephalitis and was given antiviral therapy. The diagnosis was not clarified until anti-NMDAR-IgG and MOG-IgG positivity was detected in the cerebrospinal fluid and serum. The patient was then treated with high-dose corticosteroids and his symptoms responded well to the steroids. Therefore, this case expands the clinical spectrum of MNOS overlap syndrome. In addition, we describe the clinical features of MNOS by summarizing the existing literature and exploring the possible mechanisms of its immune response. CONCLUSIONS: Our case serves as a reminder to clinicians that when patients present with atypical clinical manifestations such as seizures, consideration should be given to MNOS and conduct testing for various relevant autoantibodies (including MOG abs) and viruses in both serum and cerebrospinal fluid, as it is easy to misdiagnose the disease as other CNS diseases, such as viral meningoencephalitis. This syndrome exhibits a high responsiveness to steroids, highlighting the critical importance of recognizing the clinical and neuroimaging features of this overlap syndrome for prompt diagnosis and treatment. Furthermore, it enriches the disease spectrum of MNOS.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Humanos , Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico , Encefalite Antirreceptor de N-Metil-D-Aspartato/tratamento farmacológico , Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico por imagem , Masculino , Adulto , Glicoproteína Mielina-Oligodendrócito/imunologia , Convulsões/tratamento farmacológico , Autoanticorpos/sangue , Autoanticorpos/líquido cefalorraquidiano , Imageamento por Ressonância Magnética
2.
Biol Reprod ; 108(6): 945-959, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-36930063

RESUMO

Polycystic ovary syndrome is a complicated hormonal and metabolic disorder. The exact pathogenesis of polycystic ovary syndrome is not clear thus far. Inflammation is involved in the progression of polycystic ovary syndrome. In addition, brown adipose tissue activity is impaired in polycystic ovary syndrome. Interestingly, glucagon-like peptide-1 receptor agonists have been reported to alleviate inflammation and promote browning of white adipose tissue. In this study, the effects of glucagon-like peptide-1 receptor agonists on polycystic ovary syndrome mice were explored. Mice were randomly assigned into four groups: control, dehydroepiandrosterone, dehydroepiandrosterone + liraglutide, and dehydroepiandrosterone + semaglutide. Relative indexes were measured after glucagon-like peptide-1 receptor agonist intervention. Glucose metabolism in polycystic ovary syndrome mice was ameliorated by glucagon-like peptide-1 receptor agonists, while the reproductive endocrine disorder of polycystic ovary syndrome mice was partially reversed. The messenger ribonucleic acid levels of steroidogenic enzymes and the expression of inflammatory mediators in serum and ovaries of polycystic ovary syndrome mice were improved. Furthermore, toll-like receptor 4 and phosphorylation of nuclear factor-kappa B protein levels were decreased by glucagon-like peptide-1 receptor agonists in ovary. Notably, after glucagon-like peptide-1 receptor agonist intervention, the expression of brown adipose tissue marker levels was considerably raised in the white adipose tissue of polycystic ovary syndrome mice. In conclusion, the hyperinsulinemia and hyperandrogenemia of polycystic ovary syndrome mice were alleviated by glucagon-like peptide-1 receptor agonist intervention, which was associated with mitigating inflammation and stimulating adipose tissue browning.


Assuntos
Hiperandrogenismo , Hiperinsulinismo , Resistência à Insulina , Síndrome do Ovário Policístico , Feminino , Humanos , Camundongos , Animais , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hiperinsulinismo/tratamento farmacológico , Inflamação/tratamento farmacológico , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Desidroepiandrosterona/farmacologia
3.
J Transl Med ; 21(1): 543, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580725

RESUMO

BACKGROUND: The ventral tegmental area (VTA) contains heterogeneous cell populations. The dopaminergic neurons in VTA play a central role in reward and cognition, while CamKIIα-positive neurons, composed mainly of glutamatergic and some dopaminergic neurons, participate in the reward learning and locomotor activity behaviors. The differences in brain-wide functional and structural networks between these two neuronal subtypes were comparatively elucidated. METHODS: In this study, we applied a method combining Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and fMRI to assess the cell type-specific modulation of whole-brain neural networks. rAAV encoding the cre-dependent hM3D was injected into the right VTA of DAT-cre or CamKIIα-cre transgenic rats. The global brain activities elicited by DREADD stimulation were then detected using BOLD-fMRI. Furthermore, the cre-dependent antegrade transsynaptic viral tracer H129ΔTK-TT was applied to label the outputs of VTA neurons. RESULTS: We found that DREADD stimulation of dopaminergic neurons induced significant BOLD signal changes in the VTA and several VTA-related regions including mPFC, Cg and Septum. More regions responded to selective activation of VTA CamKIIα-positive neurons, resulting in increased BOLD signals in VTA, Insula, mPFC, MC_R (Right), Cg, Septum, Hipp, TH_R, PtA_R, and ViC_R. Along with DREADD-BOLD analysis, further neuronal tracing identified multiple cortical (MC, mPFC) and subcortical (Hipp, TH) brain regions that are structurally and functionally connected by VTA dopaminergic and CamKIIα-positive neurons. CONCLUSIONS: Our study dissects brain-wide structural and functional networks of two neuronal subtypes in VTA and advances our understanding of VTA functions.


Assuntos
Imageamento por Ressonância Magnética , Área Tegmentar Ventral , Ratos , Animais , Área Tegmentar Ventral/diagnóstico por imagem , Área Tegmentar Ventral/fisiologia , Imageamento por Ressonância Magnética/métodos , Encéfalo , Neurônios Dopaminérgicos/fisiologia
4.
Exp Eye Res ; 227: 109366, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592680

RESUMO

World blindness is primarily caused by glaucoma. It has been predicted that by 2040, 118 million individuals will have glaucoma. Among Asians and Africans, primary angle-closure glaucoma (PACG) is the most prevalent type of glaucoma, for which treatment options are currently very limited. At present, lowering intraocular pressure (IOP) is the primary approach for PACG treatment. However, some PACG patients with decreased IOP measurements still advance. Additionally, because of the complicated pathophysiology, there are no biomarkers for diagnosis. Metabolomics is the study of the metabolites produced by all cellular processes in a biological sample, providing a method for identifying biomarkers and early diagnosis. Nevertheless, metabolomics has infrequently been applied to PACG. Previous research conducted by our lab on plasma metabolite fatty acids in PACG patients revealed reduced free fatty acid (FFA) levels, which may be connected to lipid peroxidation. To ascertain the relationship between other metabolites and PACG. We compared levels of amino acids and carnitine in patients with PACG (n = 147) and non-glaucoma (n = 340). Using metabolomics analysis, twenty-one amino acids and twenty-six carnitines (a total of ninety-six indicators) were examined. Odds ratios (OR) and 95% confidence intervals (CI) for these metabolites in relation to PACG were calculated. The relationship between ocular measures and metabolites was assessed by Spearman's rank correlation. Predictive performance was evaluated using the receiver operating characteristic (ROC). The C8/C2 level was comparable across patients with PACG and individuals without glaucoma based on the Wilcoxon rank-sum test. The PACG group had lower levels of Arginine (Arg), Ornithine (Orn), Arg/Orn, Orn/Cit, and C26/C20 than the nonglaucoma group, whereas Cit/Arg and C4/C2 ratios were greater. Both univariate and multivariate models showed a negative correlation between Orn and Orn/Cit and PACG. In the univariate model, palmitoylcarnitine (C16) had a negative correlation with PACG. According to our findings, metabolic profiles of plasma amino acids and carnitine between PACG patients and controls are different. The combination of amino acids and carnitine increased the predictive value of PACG. The Orn and Arg were negatively correlated with the local ocular neurodegenerative pathology. We speculate lipid peroxidation may explain the reduction in C16, and the decrease in Orn may be associated with hyperammonia neurotoxicity.


Assuntos
Glaucoma de Ângulo Fechado , Humanos , Glaucoma de Ângulo Fechado/diagnóstico , Carnitina , Tonometria Ocular , Pressão Intraocular , Espectrometria de Massas , Biomarcadores , Aminoácidos
5.
Curr Treat Options Oncol ; 24(4): 338-352, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36877373

RESUMO

OPINION STATEMENT: Myeloid sarcoma, a rare malignant tumor characterized by the invasion of extramedullary tissue by immature myeloid cells, commonly occurs concomitantly with acute myeloid leukemia, myelodysplastic syndromes, or myeloproliferative neoplasms. The rarity of myeloid sarcoma poses challenges for diagnosis and treatment. Currently, treatments for myeloid sarcoma remain controversial and primarily follow protocols for acute myeloid leukemia, such as chemotherapy utilizing multi-agent regimens, in addition to radiation therapy and/or surgery. The advancements in next-generation sequencing technology have led to significant progress in the field of molecular genetics, resulting in the identification of both diagnostic and therapeutic targets. The application of targeted therapeutics, such as FMS-like tyrosine kinase 3(FLT3) inhibitors, isocitrate dehydrogenases(IDH) inhibitors, and the B cell lymphoma 2(BCL2) inhibitors, has facilitated the gradual transformation of traditional chemotherapy into targeted precision therapy for acute myeloid leukemia. However, the field of targeted therapy for myeloid sarcoma is relatively under-investigated and not well-described. In this review, we comprehensively summarize the molecular genetic characteristics of myeloid sarcoma and the current application of targeted therapeutics.


Assuntos
Leucemia Mieloide Aguda , Sarcoma Mieloide , Humanos , Sarcoma Mieloide/etiologia , Sarcoma Mieloide/genética , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/genética , Mutação , Inibidores de Proteínas Quinases/uso terapêutico
6.
Waste Manag Res ; 41(1): 143-154, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35730797

RESUMO

Domestic biodegradable wastes (DBW) pose a threat to environmental quality and human health. Bioconversion via black soldier fly larvae (BSFL; Hermitia illucens L.) is an expedient way for converting 'waste to resource' (insect protein and biofertilizer). Although researches abounded in laboratory-reared experiments and bioconversion mechanisms were pertinent, the void of data from actual and full-scale operation restricts the intensification of BSFL technology and its global adoption. Hence, a full-scale BSFL bioconversion system lasting 4 years in Hangzhou (China) was investigated, and the feasibility and efficiency of 15 tonnes of DBW per day were studied. Through continuous technical optimization, the average production of fresh larvae was increased from 8.5% in 2017 to 15.3% in 2020, along with bioconversion rate of final vermicompost decreased from 35.4% to 14.5%. The total biomass reduction rate in 2020 was 68.7 ± 17.4 kg/(m3 d), equivalent to 0.735 ± 0.215 kg/(kg d) in the form of fresh larvae. Crude fat in fresh larvae accounted for 13.4%, and crude protein accounted for 16.2% in which the determined amino acid profile bore a strong resemblance to fish meal only except histidine and tyrosine. Its economic benefits proved the feasibility of this technology, and the profit reached up to 35.9 US$ per tonne of DBW in 2019. In conclusion, BSFL bioconversion system under current 'insect-farm' operation was a promising solution for DBW treatment with value-added waste recycling.


Assuntos
Dípteros , Animais , Humanos , Larva , Biomassa , China , Conservação dos Recursos Naturais
7.
Anticancer Drugs ; 33(9): 923-934, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136992

RESUMO

Previous studies have suggested that circular RNAs (circRNAs) are engaged in the progression of papillary thyroid carcinoma (PTC). However, the mechanism of circ_0002111 in PTC is still unclear. In this study, quantitative real-time PCR was carried out to measure the expressions of circ_0002111, microRNAs (miRNAs) and high-mobility group box 1 (HMGB1). Immunohistochemistry assay and western blot were applied for the determination of protein levels. The assays of 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide and thymidine analog 5-ethynyl-2'-deoxyuridine were deployed to assess PTC cell viability and proliferation, respectively. Besides, the capacities of cell apoptosis, invasion and angiogenesis were determined by flow cytometry, transwell and tube formation assays, respectively. Moreover, the interaction between miR-363-3p and circ_0002111 or HMGB1 was confirmed using a dual-luciferase reporter assay. Lastly, we established a xenograft model for the examination of the function of circ_0002111 in vivo. It was found that the expression of circ_0002111 was enhanced in PTC tissues and cells. Silencing circ_0002111 apparently retarded the viability, proliferation, invasion and tube formation, as well as expedited the apoptosis of PTC cells. Besides, circ_0002111 knockdown impeded the growth of the tumor in vivo. For mechanism analysis, circ_0002111 adjusted the expression of HMGB1 by sponge adsorption of miR-363-3p. Moreover, miR-363-3p inhibitor regained the influence of cellular malignant phenotype caused by circ_0002111 knockdown. Additionally, miR-363-3p overexpression impacted the cell functions by targeting HMGB1 in PTC. Thus, silencing circ_0002111 constrained the progression of PTC by the miR-363-3p/HMGB1 axis, which perhaps provided a novel idea of the therapeutic in PTC.


Assuntos
Proteína HMGB1 , MicroRNAs , Neoplasias da Glândula Tireoide , Brometos , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Proteína HMGB1/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Timidina , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
8.
Appl Microbiol Biotechnol ; 106(11): 4315-4328, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35595931

RESUMO

Black soldier fly larvae (Hermetia illucens L. BSFL) bioconversion is a promising biotechnology for food waste recycling, yet little is known about how BSFL vermicompost affects soil health in terms of element availability and related microbial response. In this work, a field soil experiment for luffa (Luffa cylindrica (L.) Roem.) growth was conducted to examine the impacts of BSFL vermicompost (BV, 9750 kg ha-1, equal to total N input rate of chemically treated soil (CK)) on soil biochemistry and bacterial communities. Relative to CK, application of BV significantly increased total soil carbon by 149% and enhanced catalase and urease activity by 59.2% and 16.2%, respectively. BV increased the degree of aromaticity and humification in dissolved organic matter (DOM) in soil by 28.6% and 27.3%, respectively, compared to CK treatment. Among bacterial communities in soil, Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria were the phyla that showed the most substantial alteration in response to BV. Redundancy analysis further revealed that the bacterial community structure was affected by DOM and total phosphorus. Functional analyses indicated that BV enhanced xylanolysis (55.4%) and nitrogen fixation (46.3%), but inhibited nitrification (59.8%). BSFL vermicompost input might effectively prevent the harm of soil borne pathogens (e.g., wilt). Moreover, these function groups strongly correlated with Clostridiales, Actinomycetales, and Nitrospirales. Our study reveals that BSFL vermicompost promoted soil nutrient availability, microbial community succession, and biochemical function optimization, which is conducive to the popularization and application of BSFL vermicompost in the field of soil health. KEY POINTS: • Vermicompost enhanced catalase and urease levels while increased DOM aromaticity. • Vermicompost enriched Bacteroidetes and Firmicutes and improved soil health.


Assuntos
Dípteros , Eliminação de Resíduos , Animais , Bactérias , Catalase , Dípteros/microbiologia , Alimentos , Larva/microbiologia , Solo , Urease
9.
Proc Natl Acad Sci U S A ; 116(43): 21732-21738, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31594848

RESUMO

Endoplasmic reticulum (ER) stress plays an important role in metabolic diseases like obesity and type 2 diabetes mellitus (T2DM), although the underlying mechanisms and regulatory pathways remain to be elucidated. Here, we induced chronic low-grade ER stress in lean mice to levels similar to those in high-fat diet (HFD)-fed obese mice and found that it promoted hyperglycemia due to enhanced hepatic gluconeogenesis. Mechanistically, sustained ER stress up-regulated the deubiquitinating enzyme ubiquitin-specific peptidase 14 (USP14), which increased the stability and levels of 3',5'-cyclic monophosphate-responsive element binding (CREB) protein (CBP) to enhance glucagon action and hepatic gluconeogenesis. Exogenous overexpression of USP14 in the liver significantly increased hepatic glucose output. Consistent with this, liver-specific knockdown of USP14 abrogated the effects of ER stress on glucose metabolism, and also improved hyperglycemia and glucose intolerance in obese mice. In conclusion, our findings show a mechanism underlying ER stress-induced disruption of glucose homeostasis, and present USP14 as a potential therapeutic target against T2DM.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Glucagon/metabolismo , Hiperglicemia/patologia , Obesidade/patologia , Ubiquitina Tiolesterase/metabolismo , Animais , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/efeitos adversos , Retículo Endoplasmático/patologia , Técnicas de Silenciamento de Genes , Gluconeogênese/fisiologia , Glucose/metabolismo , Intolerância à Glucose/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Ubiquitina Tiolesterase/genética
10.
Proc Natl Acad Sci U S A ; 116(13): 6397-6406, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850520

RESUMO

Memory is stored in neural networks via changes in synaptic strength mediated in part by NMDA receptor (NMDAR)-dependent long-term potentiation (LTP). Here we show that a cholecystokinin (CCK)-B receptor (CCKBR) antagonist blocks high-frequency stimulation-induced neocortical LTP, whereas local infusion of CCK induces LTP. CCK-/- mice lacked neocortical LTP and showed deficits in a cue-cue associative learning paradigm; and administration of CCK rescued associative learning deficits. High-frequency stimulation-induced neocortical LTP was completely blocked by either the NMDAR antagonist or the CCKBR antagonist, while application of either NMDA or CCK induced LTP after low-frequency stimulation. In the presence of CCK, LTP was still induced even after blockade of NMDARs. Local application of NMDA induced the release of CCK in the neocortex. These findings suggest that NMDARs control the release of CCK, which enables neocortical LTP and the formation of cue-cue associative memory.


Assuntos
Colecistocinina/metabolismo , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Córtex Auditivo/metabolismo , Comportamento Animal , Colecistocinina/genética , Estimulação Elétrica , Córtex Entorrinal/metabolismo , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Metilaspartato/metabolismo , Neocórtex/metabolismo , Neurônios/metabolismo , Ratos Sprague-Dawley , Receptor de Colecistocinina B/efeitos dos fármacos , Receptor de Colecistocinina B/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sinapses/metabolismo
11.
Cell Tissue Bank ; 23(3): 569-580, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35147838

RESUMO

Ectoderm-derived mesenchymal stem cells (EMSCs) were used as potential seed cells for bone tissue engineering to treat bone defects due to their capability of rapid proliferation and osteogenic differentiation. Sonic hedgehog (Shh) signaling was reported to play an important role in the development of bone tissue, but its role is not understood. The present study investigated the role of Shh molecule in osteogenic differentiation of rat EMSCs in vitro. Rat EMSCs were isolated form nasal respiratory mucosa and identified with immunofluorescence and analyzed with other methods, including reverse transcriptase polymerase chain reaction (qPCR) and western blotting. EMSCs expressed CD90, CD105, nestin, and vimentin. On the seventh day of osteogenic induction, expression levels of Shh and Gli1 was higher according to the result of qPCR and Western blotting. After induction for 14 days, higher alkaline phosphatase (ALP) activity and more mineralized nodules were seen in comparison to the cells that did not undergo induction. Shh signaling appears to enhance osteogenic differentiation of rat EMSCs, suggesting that Shh signaling directs the lineage differentiation of ectodermal stem cells and represents a promising strategy for skeletal tissue regeneration.


Assuntos
Proteínas Hedgehog/metabolismo , Células-Tronco Mesenquimais , Osteogênese , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Ratos
12.
Exp Eye Res ; 202: 108367, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33232710

RESUMO

The autonomic innervation in the anterior chamber (AC) structures might play an efferent role in neural intraocular pressure (IOP) regulation, the center of which is thought to be located in the hypothalamus. In this study, we identified the efferent pathway from the hypothalamus to the autonomic innervation in the AC structures. Retrograde trans-multisynaptic pseudorabies virus (PRV) expressing green or red fluorescent protein, PRV531 and PRV724, was injected into the right and left AC of five rats, respectively; PRV531 was injected into the right AC of another five rats, and a non-trans-synaptic tracer, FAST Dil, was injected into the right AC of five rats as a control. Fluorescence signals in autonomic ganglia,the spinal cord and the central nervous system (CNS) were observed. Seven days after FAST Dil right AC injection, FAST Dil-labeled neurons were observed in the ipsilateral autonomic ganglia, including the superior cervical ganglion, pterygopalatine ganglion, and ciliary ganglion, but not in the CNS. Four and a half days after PRV531 injection into the right AC, PRV531-labeled neurons could be observed in the ipsilateral autonomic ganglia and bilateral hypothalamus nuclei, especially in the suprachiasmatic nucleus, paraventricular nucleus, dorsomedial hypothalamus, perifornical hypothalamus and ventral mammillary nucleus. Fluorescence signals of PRV531 mainly located in the ipsilateral autonomic preganglionic nuclei (Edinger-Westphal nucleus, superior salivatory nucleus and intermediolateral nucleus), but not in sensory trigeminal nuclei. Four and a half days after PRV531 right AC injection and PRV724 left AC injection, PRV531-labeled, PRV724-labeled, and double-labeled neurons could be observed in the above mentioned bilateral hypothalamus nuclei; but few contralateral infection-involving neurons (including double-labeled neurons) could be detected in the autonomic preganglionic nuclei. Our results indicate that there exist a both crossed and uncrossed hypothalamo-pre-parasympathetic and -pre-sympathetic tracts in the efferent pathways between the bilateral hypothalamic nuclei and the autonomic innervation of the bilateral AC.


Assuntos
Câmara Anterior/inervação , Sistema Nervoso Autônomo/anatomia & histologia , Vias Eferentes/anatomia & histologia , Hipotálamo/anatomia & histologia , Animais , Pressão Intraocular/fisiologia , Masculino , Modelos Anatômicos , Modelos Animais , Ratos , Ratos Sprague-Dawley
13.
Amino Acids ; 53(1): 11-22, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33245424

RESUMO

As a promising cell therapy, neural crest-derived ectoderm mesenchymal stem cells (EMSCs) secrete high amounts of extracellular matrix (ECM) and neurotrophic factors, promoting neural stem cell (NSC) differentiation into neuronal lineages and aiding tissue regeneration. Additionally, the forced overexpression of secreted proteins can increase the therapeutic efficacy of the secretome. Tissue transglutaminase (TG2) is a ubiquitously expressed member of the transglutaminase family of calcium-dependent crosslinking enzymes, which can stabilize the ECM, inducing smart or living biomaterial to stimulate differentiation and enhance the neurogenesis of NSCs. In this study, we examined the neuronal differentiation of NSCs induced by TG2 gene-modified EMSCs (TG2-EMSCs) in a co-culture model directly. Two weeks after initiating differentiation, levels of the neuronal markers, tubulin beta 3 class III and growth-associated protein 43, were higher in NSCs in the TG2-EMSC co-culture group and those of the astrocytic marker glial fibrillary acidic protein were lower, compared with the control group. These results were confirmed by immunofluorescence, and laminin, fibronectin and sonic hedgehog (Shh) contributed to this effect. The results of western blot analysis and the enzyme-linked immunoassay showed that after TG2-EMSCs were co-cultured for 2 weeks, they expressed much higher levels of Shh than the control group. Moreover, the sustained release of Shh was observed in the TG2-EMSC co-culture group. Overall, our findings indicate that EMSCs can induce the differentiation of NSCs, of which TG2-EMSCs can promote the differentiation of NSCs compared with EMSCs.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas Hedgehog/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neurais/citologia , Transglutaminases/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Fibronectinas/metabolismo , Proteínas de Ligação ao GTP/genética , Laminina/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Neurais/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Ratos , Transglutaminases/genética
14.
Curr Microbiol ; 78(1): 303-315, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33141316

RESUMO

Using black soldier fly (Hermetia illucens) larvae in treatment of livestock manure is a promising technology. In this study, high-throughput sequencing was used to analyze the microbial community in chicken manure before and after treatment with H. illucens larvae. In fresh chicken manure, the most abundant bacterial phylum was Firmicutes (55.58%) followed by Bacteroidetes (24.52%) and then Proteobacteria (12.29%). After treatment of the manure with H. illucens larvae for 15 days, the abundance of Firmicutes increased to 97.72% while that of Bacteroidetes and Proteobacteria decreased. Concomitantly, the most abundant genera of fungi in chicken manure changed from Kernia (46.19%) and Microascus (17.22%) to Penicillium (46.82%) and Aspergillus (45.22%). Correlation-network analysis showed the existence of strong and complex correlations between the dominant operational taxonomic units (OUT) of bacteria and fungi. While most of these correlations were positive, three specific genera, namely g_norank_f_Bacillaceae, Penicillium, and Aspergillus exhibited negative correlations with the remaining genera. These three genera were highly abundant in the intestines of H. illucens and in chicken manure treated with H. illucens larvae. Based on 16S rDNA microbiome-function predictions, the metabolic pathways associated with sugars, amino acids, and organic pollutants inside the intestinal tract of H. illucens were enriched versus those of the other three groups. In summary, the treatment of chicken manure with H. illucens larvae significantly reduced the microbial diversity, while strongly increasing organic metabolism in the intestinal bacteria. This technology shows the potential for applications in livestock manure treatment.


Assuntos
Dípteros , Microbiota , Animais , Galinhas , Larva , Esterco
15.
BMC Pulm Med ; 21(1): 208, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210314

RESUMO

BACKGROUND: Molecular targeted therapy for non-small cell lung carcinoma (NSCLC) is restricted due to resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). This study evaluated the effects of dual targeting of MEK and PI3K in human EGFR-TKI resistant NSCLC cell lines. METHODS: EGFR-TKI resistant NSCLC cell lines H1975, H460, and A549, with different mutation and amplification status in EGFR, K-RAS, PIK3CA, and MET genes, were treated with a MEK162 (MEK inhibitor) and BKM120 (PI3K inhibitor) combination or a BIBW2992 (EGFR inhibitor) and ARQ197 (MET inhibitor) combination and assayed for cell proliferation, apoptosis, and cell cycle distribution. RESULTS: Dual targeting of MEK and PI3K efficiently inhibited the cell proliferation, induced apoptosis and the G0/G1 cell cycle, and decreased the phosphorylation of ERK1/2, AKT, S6, and 4E-BP1. H460 cells with K-RAS and PIK3CA mutation were most sensitive to MEK162 and BKM120 combinations. H1975 cells with EGFR and PIK3CA mutation and MET amplification were sensitive to BIBW2992 and ARQ197 combinations. CONCLUSION: Dual targeting regulated the proliferation of EGFR-TKI-resistant NSCLC cells, especially mutants in K-RAS and PIK3CA that are promising for EGFR-TKI-resistant NSCLC therapeutics.


Assuntos
Afatinib/farmacologia , Aminopiridinas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Morfolinas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirrolidinonas/farmacologia , Quinolinas/farmacologia
16.
J Neurosci ; 39(48): 9546-9559, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31628176

RESUMO

Sensory cortices process stimuli in manners essential for perception. Very little is known regarding interactions between olfactory cortices. The piriform "primary" olfactory cortex, especially its anterior division (aPCX), extends dense association fibers into the ventral striatum's olfactory tubercle (OT), yet whether this corticostriatal pathway is capable of shaping OT activity, including odor-evoked activity, is unknown. Further unresolved is the synaptic circuitry and the spatial localization of OT-innervating PCX neurons. Here we build upon standing literature to provide some answers to these questions through studies in mice of both sexes. First, we recorded the activity of OT neurons in awake mice while optically stimulating principal neurons in the aPCX and/or their association fibers in the OT while the mice were delivered odors. This uncovered evidence that PCX input indeed influences OT unit activity. We then used patch-clamp recordings and viral tracing to determine the connectivity of aPCX neurons upon OT neurons expressing dopamine receptor types D1 or D2, two prominent cell populations in the OT. These investigations uncovered that both populations of neurons receive monosynaptic inputs from aPCX glutamatergic neurons. Interestingly, this input originates largely from the ventrocaudal aPCX. These results shed light on some of the basic physiological properties of this pathway and the cell-types involved and provide a foundation for future studies to identify, among other things, whether this pathway has implications for perception.SIGNIFICANCE STATEMENT Sensory cortices interact to process stimuli in manners considered essential for perception. Very little is known regarding interactions between olfactory cortices. The present study sheds light on some of the basic physiological properties of a particular intercortical pathway in the olfactory system and provides a foundation for future studies to identify, among other things, whether this pathway has implications for perception.


Assuntos
Ácido Glutâmico/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Tubérculo Olfatório/metabolismo , Córtex Piriforme/metabolismo , Receptores de Dopamina D1/biossíntese , Receptores de Dopamina D2/biossíntese , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Odorantes , Neurônios Receptores Olfatórios/efeitos dos fármacos , Tubérculo Olfatório/efeitos dos fármacos , Córtex Piriforme/efeitos dos fármacos , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Olfato/fisiologia
17.
Cancer Sci ; 111(1): 186-199, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31746077

RESUMO

Activity of transcriptional co-activator with PDZ binding domain (TAZ) protein is strongly implicated in the pathogenesis of human cancer and is influenced by tumor metabolism. High levels of lactate concentration in the tumor microenvironment as a result of metabolic reprogramming are inversely correlated with patient overall survival. Herein, we investigated the role of lactate in the regulation of the activity of TAZ and showed that glycolysis-derived lactate efficiently increased TAZ expression and activity in lung cancer cells. We showed that the reactive oxygen species (ROS) generated by lactate-fueled oxidative phosphorylation (OXPHOS) in mitochondria activated AKT and thereby inhibited glycogen synthase kinase 3 beta/beta-transducin repeat-containing proteins (GSK-3ß/ß-TrCP)-mediated ubiquitination and degradation of DNA methyltransferase 1 (DNMT1). Upregulation of DNMT1 by lactate caused hypermethylation of TAZ negative regulator of the LATS2 gene promoter, leading to TAZ activation. Moreover, TAZ binds to the promoter of DNMT1 and is necessary for DNMT1 transcription. Our study showed a molecular mechanism of DNMT1 in linking tumor metabolic reprogramming to the Hippo-TAZ pathway and functional significance of the DNMT1-TAZ feedback loop in the migratory and invasive potential of lung cancer cells.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/genética , Ácido Láctico/metabolismo , Estresse Oxidativo/genética , Transativadores/genética , Transcrição Gênica/genética , Ativação Transcricional/genética , Linhagem Celular Tumoral , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
18.
J Autoimmun ; 112: 102464, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32381456

RESUMO

Pirfenidone has been widely used in the treatment of idiopathic pulmonary fibrosis (IPF). However, the role of pirfenidone in LPS-induced acute lung injury (ALI) remains unclear. This study aims to investigate the protective effects of pirfenidone in ALI and to explore its underlying mechanism. Pirfenidone clearly reduces LPS-triggered ALI as indicated by significant pathological alterations, reduced oxidative stress and inflammatory responses in vivo. Furthermore, pirfenidone also blocks apoptosis of LPS-induced alveolar epithelial type II (ATII) cells through inhibition of endoplasmic reticulum (ER) stress and mitochondrial injury in vivo and in vitro. A lower expression level of BAP31, an ER transmembrane protein, was found to be associated with ALI followed LPS challenge. The reintroduction of BAP31 blunted LPS induced ER stress and mitochondrial damage and therefore alleviated ATII cell apoptosis, which correlated with pirfenidone treatment. Knockdown of BAP31 expression in pirfenidone treated ATII cells re-activated ER stress, mitochondrial damage and followed cellular apoptosis. In summary, this study confirms the beneficial effect of pirfenidone on ER stress and mitochondrial dysfunction mediated apoptosis via upregulation of BAP31. Our results demonstrated that pirfenidone may be considered as a potential agent for the treatment of ALI in the future.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Membrana/agonistas , Piridonas/farmacologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Células Epiteliais Alveolares , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Células Cultivadas , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/imunologia , Técnicas de Silenciamento de Genes , Humanos , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Mitocôndrias/patologia , Cultura Primária de Células , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/patologia , Piridonas/uso terapêutico , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia
19.
Cell Commun Signal ; 18(1): 167, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097055

RESUMO

BACKGROUND: Metabolic reprogramming contributes significantly to tumor development and is tightly linked to drug resistance. The chemotherapeutic agent etoposide (VP-16) has been used clinically in the treatment of lung cancer but possess different sensitivity and efficacy towards SCLC and NSCLC. Here, we assessed the impact of etoposide on glycolytic metabolism in SCLC and NSCLC cell lines and investigated the role of metabolic rewiring in mediating etoposide resistance. METHODS: glycolytic differences of drug-treated cancer cells were determined by extracellular acidification rate (ECAR), glucose consumption, lactate production and western blot. DNA damage was evaluated by the comet assay and western blot. Chemoresistant cancer cells were analyzed by viability, apoptosis and western blot. Chromatin immunoprecipitation (ChIP) was used for analysis of DNA-protein interaction. RESULTS: Here we showed that exposure to chemotherapeutic drug etoposide induces an exacerbation of ROS production which activates HIF-1α-mediated the metabolic reprogramming toward increased glycolysis and lactate production in non-small cell lung cancer (NSCLC). We identified lactic acidosis as the key that confers multidrug resistance through upregulation of multidrug resistance-associated protein 1 (MRP1, encoded by ABCC1), a member of ATP-binding cassette (ABC) transporter family. Mechanistically, lactic acid coordinates TGF-ß1/Snail and TAZ/AP-1 pathway to induce formation of Snail/TAZ/AP-1 complex at the MRP1/ABCC1 promoter. Induction of MRP1 expression inhibits genotoxic and apoptotic effects of chemotherapeutic drugs by increasing drug efflux. Furthermore, titration of lactic acid with NaHCO3 was sufficient to overcome resistance. CONCLUSIONS: The chemotherapeutic drug etoposide induces the shift toward aerobic glycolysis in the NSCLC rather than SCLC cell lines. The increased lactic acid in extracellular environment plays important role in etoposide resistance through upregulation of MRP expression. These data provide first evidence for the increased lactate production, upon drug treatment, contributes to adaptive resistance in NSCLC and reveal potential vulnerabilities of lactate metabolism and/or pathway suitable for therapeutic targeting. Video Abstract The chemotherapeutic drug etoposide induces metabolic reprogramming towards glycolysis in the NSCLC cells. The secreted lactic acid coordinates TGF-ß1/Snail and TAZ/AP-1 pathway to activate the expression of MRP1/ABCC1 protein, thus contributing to chemoresistance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Etoposídeo/farmacologia , Lactatos/farmacologia , Neoplasias Pulmonares/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lactatos/metabolismo , Mutagênicos/toxicidade , Fatores de Transcrição da Família Snail/metabolismo , Fator de Transcrição AP-1/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Regulação para Cima/efeitos dos fármacos
20.
Bioorg Med Chem Lett ; 30(2): 126858, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31836444

RESUMO

This study aims to investigate the neuroprotective effects of Pyrola incarnata against ß-amyloid-induced memory impairment in mice. Ethanol extract of Pyrola incarnata (EPI) was obtained and led to eleven phytochemicals successfully by isolation and purification, which were elucidated by spectroscopic analysis (1H NMR, 13C NMR and HR-ESI-MS). Thereinto, ursolic acid was gained as most abundant monomer. C57BL/6 mice were intracerebroventricular injected with aggregated Aß25-35. Open-field test, Barnes maze test and Morris water maze were conducted for evaluating cognition processes of EPI and ursolic acid. EPI significantly improved learning and memory deficits, attenuated the Aß25-35 level of deposition immunohistochemically. Further studies revealed that ursolic acid as bioactive phytochemical of P. incarnata improved spatial memory performance and ameliorated Aß25-35 accumulation by activating microglia cells and up-regulating Iba1 level in the hippocampus. These findings suggest P. incarnata could improve the cognition of mice and be a promising natural source for the treatment of neurodegenerative disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Pyrola/química , Animais , Humanos , Camundongos , Fármacos Neuroprotetores/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa