Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 745
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 606(7916): 909-916, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35768591

RESUMO

Thermal insulation under extreme conditions requires materials that can withstand complex thermomechanical stress and retain excellent thermal insulation properties at temperatures exceeding 1,000 degrees Celsius1-3. Ceramic aerogels are attractive thermal insulating materials; however, at very high temperatures, they often show considerably increased thermal conductivity and limited thermomechanical stability that can lead to catastrophic failure4-6. Here we report a multiscale design of hypocrystalline zircon nanofibrous aerogels with a zig-zag architecture that leads to exceptional thermomechanical stability and ultralow thermal conductivity at high temperatures. The aerogels show a near-zero Poisson's ratio (3.3 × 10-4) and a near-zero thermal expansion coefficient (1.2 × 10-7 per degree Celsius), which ensures excellent structural flexibility and thermomechanical properties. They show high thermal stability with ultralow strength degradation (less than 1 per cent) after sharp thermal shocks, and a high working temperature (up to 1,300 degrees Celsius). By deliberately entrapping residue carbon species in the constituent hypocrystalline zircon fibres, we substantially reduce the thermal radiation heat transfer and achieve one of the lowest high-temperature thermal conductivities among ceramic aerogels so far-104 milliwatts per metre per kelvin at 1,000 degrees Celsius. The combined thermomechanical and thermal insulating properties offer an attractive material system for robust thermal insulation under extreme conditions.

2.
Plant Cell ; 35(1): 409-434, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36222567

RESUMO

Fluctuations in nitrogen (N) availability influence protein and starch levels in maize (Zea mays) seeds, yet the underlying mechanism is not well understood. Here, we report that N limitation impacted the expression of many key genes in N and carbon (C) metabolism in the developing endosperm of maize. Notably, the promoter regions of those genes were enriched for P-box sequences, the binding motif of the transcription factor prolamin-box binding factor 1 (PBF1). Loss of PBF1 altered accumulation of starch and proteins in endosperm. Under different N conditions, PBF1 protein levels remained stable but PBF1 bound different sets of target genes, especially genes related to the biosynthesis and accumulation of N and C storage products. Upon N-starvation, the absence of PBF1 from the promoters of some zein genes coincided with their reduced expression, suggesting that PBF1 promotes zein accumulation in the endosperm. In addition, PBF1 repressed the expression of sugary1 (Su1) and starch branching enzyme 2b (Sbe2b) under normal N supply, suggesting that, under N-deficiency, PBF1 redirects the flow of C skeletons for zein toward the formation of C compounds. Overall, our study demonstrates that PBF1 modulates C and N metabolism during endosperm development in an N-dependent manner.


Assuntos
Endosperma , Zeína , Endosperma/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/metabolismo , Proteínas de Plantas/metabolismo , Prolaminas/genética , Zeína/genética , Zeína/metabolismo , Nitrogênio/metabolismo , Amido/metabolismo , Regulação da Expressão Gênica de Plantas
3.
EMBO Rep ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358552

RESUMO

CHK1 mutations could cause human zygote arrest at the pronuclei stage, a phenomenon that is not well understood at the molecular level. In this study, we conducted experiments where pre-pronuclei from zygotes with CHK1 mutation were transferred into the cytoplasm of normal enucleated fertilized eggs. This approach rescued the zygote arrest caused by the mutation, resulting in the production of a high-quality blastocyst. This suggests that CHK1 dysfunction primarily disrupts crucial biological processes occurring in the cytoplasm. Further investigation reveals that CHK1 mutants have an impact on the F-actin meshwork, leading to disturbances in pronuclear envelope breakdown. Through co-immunoprecipitation and mass spectrometry analysis of around 6000 mouse zygotes, we identified an interaction between CHK1 and MICAL3, a key regulator of F-actin disassembly. The gain-of-function mutants of CHK1 enhance their interaction with MICAL3 and increase MICAL3 enzymatic activity, resulting in excessive depolymerization of F-actin. These findings shed light on the regulatory mechanism behind pronuclear envelope breakdown during the transition from meiosis to the first mitosis in mammals.

4.
Plant Physiol ; 196(1): 535-550, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38743701

RESUMO

Maize (Zea mays L.) has very strong requirements for nitrogen. However, the molecular mechanisms underlying the regulations of nitrogen uptake and translocation in this species are not fully understood. Here, we report that an APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ZmEREB97 functions as an important regulator in the N signaling network in maize. Predominantly expressed and accumulated in main root and lateral root primordia, ZmEREB97 rapidly responded to nitrate treatment. By overlapping the analyses of differentially expressed genes and conducting a DAP-seq assay, we identified 1,446 potential target genes of ZmEREB97. Among these, 764 genes were coregulated in 2 lines of zmereb97 mutants. Loss of function of ZmEREB97 substantially weakened plant growth under both hydroponic and soil conditions. Physiological characterization of zmereb97 mutant plants demonstrated that reduced biomass and grain yield were both associated with reduced nitrate influx, decreased nitrate content, and less N accumulation. We further demonstrated that ZmEREB97 directly targets and regulates the expression of 6 ZmNRT genes by binding to the GCC-box-related sequences in gene promoters. Collectively, these data suggest that ZmEREB97 is a major positive regulator of the nitrate response and that it plays an important role in optimizing nitrate uptake, offering a target for improvement of nitrogen use efficiency in crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Nitratos , Proteínas de Plantas , Raízes de Plantas , Fatores de Transcrição , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Nitratos/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
5.
Chem Rev ; 123(9): 6257-6358, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36944098

RESUMO

The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.

6.
Nature ; 576(7786): 306-310, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31801998

RESUMO

In the interphase of the cell cycle, chromatin is arranged in a hierarchical structure within the nucleus1,2, which has an important role in regulating gene expression3-6. However, the dynamics of 3D chromatin structure during human embryogenesis remains unknown. Here we report that, unlike mouse sperm, human sperm cells do not express the chromatin regulator CTCF and their chromatin does not contain topologically associating domains (TADs). Following human fertilization, TAD structure is gradually established during embryonic development. In addition, A/B compartmentalization is lost in human embryos at the 2-cell stage and is re-established during embryogenesis. Notably, blocking zygotic genome activation (ZGA) can inhibit TAD establishment in human embryos but not in mouse or Drosophila. Of note, CTCF is expressed at very low levels before ZGA, and is then highly expressed at the ZGA stage when TADs are observed. TAD organization is significantly reduced in CTCF knockdown embryos, suggesting that TAD establishment during ZGA in human embryos requires CTCF expression. Our results indicate that CTCF has a key role in the establishment of 3D chromatin structure during human embryogenesis.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina , Fator de Ligação a CCCTC/genética , Embrião de Mamíferos , Desenvolvimento Embrionário , Regulação da Expressão Gênica , Humanos , Masculino , Espermatozoides/metabolismo
7.
J Med Genet ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209701

RESUMO

BACKGROUND: Recurrent preimplantation embryo developmental arrest (RPEA) is the most common phenotype in assisted reproductive technology treatment failure associated with identified genetic abnormalities. Currently known maternal genetic variants explain only a limited number of cases. Variants of the ß-tubulin subunit gene, TUBB8, cause oocyte meiotic arrest and RPEA through a broad spectrum of spindle defects. In contrast, α-tubulin subunit genes are poorly studied in the context of preimplantation embryonic development. METHODS: Whole exome sequencing was performed on the PREA cohort. Functional characterisations of the identified candidate disease-causing variants were validated using Sanger sequencing, bioinformatics, in vitro functional analyses and single-cell RNA-sequencing of arrested embryos. RESULTS: Four homozygous variants were identified in the PREA cohort: two of TUBA1C (p.Gln358Ter and p.Asp444Metfs*42) and two of TUBA4A (p.Arg339Cys and p.Tyr440Ter). These variants cause varying degrees of spindle assembly defects. Additionally, we characterised changes in the human arrested embryo transcriptome carrying TUBA4A variants, with a particular focus on spindle organisation, chromosome segregation and mRNA decay. CONCLUSION: Our findings identified TUBA1C as a novel genetic marker and expanded the genetic and phenotypic spectrum of TUBA4A in female infertility and RPEA, which altogether highlighted the importance of α-tubulin isotypes in preimplantation embryonic development.

8.
Mol Cell Proteomics ; 22(4): 100520, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36842607

RESUMO

Ovarian cancer is a gynecological tumor with extremely high mortality and poor prognosis. Exosomes derived from tumor cells contain abundant proteins that may influence tumor metastasis. The purpose of our study was to explore the proteomic profile of serum exosomes from epithelial ovarian cancer (EOC) patients and to find potential diagnostic markers for EOC. We obtained purified exosomes from serum using ultracentrifugation. Migration assay was used to evaluate the effects of exosomes on the migration of EOC cells. Proteomic profile of serum exosomes was analyzed by liquid chromatogram-tandem mass spectrometry. The levels of low-density lipoprotein receptor-related protein 1 (LRP1) in serum and serum exosomes were determined by enzyme-linked immunosorbent assay. Western blot and Immunohistochemistry were used to determine the level of LRP1 in tissues. Moreover, we performed small-interfering RNA-mediated knockdown of LRP1 in EOC cells to obtain SI-LRP1-Exos and SI-NC-Exos. The detailed mechanisms by which exosomal LRP1 affected the migration of EOC cells in vitro and in vivo were also explored. We found that serum exosomes from EOC patients contributed to the migration of EOC cells. The level of serum exosomal LRP1 of EOC patients was significantly upregulated compared with that of healthy volunteers, which was consistent with the result of enzyme-linked immunosorbent assay. We found that exosomal LRP1 regulated the expression of MMP2 and MMP9 through ERK signaling pathway and affected the migration of EOC cells in vitro and in vivo. Therefore, we propose that exosomal LRP1 contributes to the migration of EOC and may act as an important diagnostic and prognostic biomarker of EOC.


Assuntos
Exossomos , Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário , Exossomos/metabolismo , Proteômica , Neoplasias Ovarianas/patologia , Transdução de Sinais , Linhagem Celular Tumoral , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
9.
Nucleic Acids Res ; 51(11): 5565-5583, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37140030

RESUMO

The single-stranded DNA (ssDNA) binding protein complex RPA plays a critical role in promoting DNA replication and multiple DNA repair pathways. However, how RPA is regulated to achieve its functions precisely in these processes remains elusive. Here, we found that proper acetylation and deacetylation of RPA are required to regulate RPA function in promoting high-fidelity DNA replication and repair. We show that yeast RPA is acetylated on multiple conserved lysines by the acetyltransferase NuA4 upon DNA damage. Mimicking constitutive RPA acetylation or blocking its acetylation causes spontaneous mutations with the signature of micro-homology-mediated large deletions or insertions. In parallel, improper RPA acetylation/deacetylation impairs DNA double-strand break (DSB) repair by the accurate gene conversion or break-induced replication while increasing the error-prone repair by single-strand annealing or alternative end joining. Mechanistically, we show that proper acetylation and deacetylation of RPA ensure its normal nuclear localization and ssDNA binding ability. Importantly, mutation of the equivalent residues in human RPA1 also impairs RPA binding on ssDNA, leading to attenuated RAD51 loading and homologous recombination repair. Thus, timely RPA acetylation and deacetylation likely represent a conserved mechanism promoting high-fidelity replication and repair while discriminating the error-prone repair mechanisms in eukaryotes.


Assuntos
Proteína de Replicação A , Proteínas de Saccharomyces cerevisiae , Humanos , Acetilação , Reparo do DNA , Replicação do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Histona Acetiltransferases/metabolismo , Rad51 Recombinase/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Células HeLa
10.
J Cell Mol Med ; 28(12): e18440, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38890792

RESUMO

Hepatitis B virus (HBV) damages liver cells through abnormal immune responses. Mitochondrial metabolism is necessary for effector functions of white blood cells (WBCs). The aim was to investigate the altered counts and mitochondrial mass (MM) of WBCs by two novel indicators of mitochondrial mass, MM and percentage of low mitochondrial membrane potential, MMPlow%, due to chronic HBV infection. The counts of lymphocytes, neutrophils and monocytes in the HBV infection group were in decline, especially for lymphocyte (p = 0.034) and monocyte counts (p = 0.003). The degraded MM (p = 0.003) and MMPlow% (p = 0.002) of lymphocytes and MM (p = 0.005) of monocytes suggested mitochondrial dysfunction of WBCs. HBV DNA within WBCs showed an extensive effect on mitochondria metabolic potential of lymphocytes, neutrophils and monocytes indicated by MM; hepatitis B e antigen was associated with instant mitochondrial energy supply indicated by MMPlow% of neutrophils; hepatitis B surface antigen, antiviral therapy by nucleos(t)ide analogues and prolonged infection were also vital factors contributing to WBC alterations. Moreover, degraded neutrophils and monocytes could be used to monitor immune responses reflecting chronic liver fibrosis and inflammatory damage. In conclusion, MM combined with cell counts of WBCs could profoundly reflect WBC alterations for monitoring chronic HBV infection. Moreover, HBV DNA within WBCs may be a vital factor in injuring mitochondria metabolic potential.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Mitocôndrias , Humanos , Hepatite B Crônica/virologia , Hepatite B Crônica/patologia , Masculino , Feminino , Vírus da Hepatite B/patogenicidade , Adulto , Mitocôndrias/metabolismo , Pessoa de Meia-Idade , Contagem de Leucócitos , Leucócitos/metabolismo , DNA Viral/sangue , Potencial da Membrana Mitocondrial , Monócitos/metabolismo , Monócitos/imunologia , Monócitos/virologia , Monócitos/patologia , Neutrófilos/metabolismo , Neutrófilos/imunologia
11.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L589-L595, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38375568

RESUMO

Cold-stored (CS) platelets are once again being reintroduced for clinical use. Transfused CS platelets offer benefits over room temperature-stored (RTS) platelets such as increased hemostatic effects and prolongation of shelf-life. Despite these advantages little is known about their association with transfusion-related acute lung injury (TRALI). TRALI is associated with prolonged storage of RTS platelets and has a mortality of >15%. Determining the safety of CS platelets is important considering their proposed use in TRALI-vulnerable populations with inflammation such as surgical patients or patients with trauma. Donor platelet-derived ceramide causes TRALI, whereas donor platelet sphingosine-1-phosphate (S1P) is barrier protective. Females have higher plasma levels of S1P than males. Cold temperatures increase S1P levels in cells. Therefore, we hypothesized that female (donors or recipients) and/or CS platelets would decrease TRALI. To test this, we compared how male and female donor and recipient allogeneic platelet transfusions of CS (4°C) versus RTS (23°C) platelets stored for 5 days influence murine TRALI. Transfusion of CS platelets significantly reduced recipient lung tissue wet-to-dry ratios, bronchoalveolar lavage total protein, lung tissue myeloperoxidase enzyme activity, histological lung injury scores, and increased plasma sphingosine-1-phosphate (S1P) levels compared with RTS platelet transfusions. Female as opposed to male recipients had less TRALI and higher plasma S1P levels. Female donor mouse platelets had higher S1P levels than males. Mouse and human CS platelets had increased S1P levels compared with RTS platelets. Higher recipient plasma S1P levels appear protective considering females, and males receiving platelets from females or male CS platelets had less TRALI.NEW & NOTEWORTHY Transfusion-related acute lung injury (TRALI) though relatively rare represents a severe lung injury. The sphingolipid sphingosine-1-phosphate (S1P) regulates the severity of platelet-mediated TRALI. Female platelet transfusion recipient plasmas or stored platelets from female donors have higher S1P levels than males, which reduces TRALI. Cold storage of murine platelets preserves platelet-S1P, which reduces TRALI in platelet-transfused recipients.


Assuntos
Preservação de Sangue , Lisofosfolipídeos , Esfingosina , Esfingosina/análogos & derivados , Lesão Pulmonar Aguda Relacionada à Transfusão , Lisofosfolipídeos/sangue , Lisofosfolipídeos/metabolismo , Esfingosina/sangue , Animais , Feminino , Masculino , Camundongos , Preservação de Sangue/métodos , Lesão Pulmonar Aguda Relacionada à Transfusão/sangue , Transfusão de Plaquetas , Camundongos Endogâmicos C57BL , Plaquetas/metabolismo , Humanos , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/prevenção & controle
12.
Antimicrob Agents Chemother ; : e0114824, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382275

RESUMO

This study aimed to develop a pharmacokinetic model of linezolid in premature neonates and evaluate and optimize the administration regimen. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to detect the blood concentration data of 54 premature neonates after intravenous administration of linezolid, and the relevant clinical data were collected. The population pharmacokinetic (PPK) model was established by nonlinear mixed effects modeling. Based on the final model parameters, the optimal administration regimen of linezolid in premature neonates with different body surface areas (BSA) was simulated and evaluated. The pharmacokinetic properties of linezolid in premature neonates are best described by a single-compartment model with primary elimination. The population typical values for apparent volume of distribution and clearance were 0.783 L and 0.154 L/h, respectively. BSA was a statistically significant covariate with clearance (CL) and volume of distribution (Vd). Monte Carlo simulations showed that the optimal administration regimen for linezolid in premature neonates was 6 mg/kg q8h for BSA 0.11 m2, 7 mg/kg q8h for BSA 0.13 m2, and 9 mg/kg q8h for BSA 0.15 m2 with minimum inhibitory concentration (MIC) ≤1 mg/L, 7 mg/kg q8h for BSA 0.11 m2, 8 mg/kg q8h for BSA 0.13 m2, and 10 mg/kg q8h for BSA 0.15 m2 with MIC = 2 mg/L. A pharmacokinetic model was developed to predict the blood concentration on linezolid in premature neonates. Based on this model, the optimal administration regimen of linezolid in premature neonates needs to be individualized according to different BSA levels.

13.
N Engl J Med ; 385(22): 2047-2058, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34818479

RESUMO

BACKGROUND: Embryo selection with preimplantation genetic testing for aneuploidy (PGT-A) may improve pregnancy outcomes after initial embryo transfer. However, it remains uncertain whether PGT-A improves the cumulative live-birth rate as compared with conventional in vitro fertilization (IVF). METHODS: In this multicenter, randomized, controlled trial, we randomly assigned subfertile women with three or more good-quality blastocysts to undergo either PGT-A or conventional IVF; all the women were between 20 and 37 years of age. Three blastocysts were screened by next-generation sequencing in the PGT-A group or were chosen by morphologic criteria in the conventional-IVF group and then were successively transferred one by one. The primary outcome was the cumulative live-birth rate after up to three embryo-transfer procedures within 1 year after randomization. We hypothesized that the use of PGT-A would result in a cumulative live-birth rate that was no more than 7 percentage points higher than the rate after conventional IVF, which would constitute the noninferiority margin for conventional IVF as compared with PGT-A. RESULTS: A total of 1212 patients underwent randomization, and 606 were assigned to each trial group. Live births occurred in 468 women (77.2%) in the PGT-A group and in 496 (81.8%) in the conventional-IVF group (absolute difference, -4.6 percentage points; 95% confidence interval [CI], -9.2 to -0.0; P<0.001). The cumulative frequency of clinical pregnancy loss was 8.7% and 12.6%, respectively (absolute difference, -3.9 percentage points; 95% CI, -7.5 to -0.2). The incidences of obstetrical or neonatal complications and other adverse events were similar in the two groups. CONCLUSIONS: Among women with three or more good-quality blastocysts, conventional IVF resulted in a cumulative live-birth rate that was noninferior to the rate with PGT-A. (Funded by the National Natural Science Foundation of China and others; ClinicalTrials.gov number, NCT03118141.).


Assuntos
Aneuploidia , Fertilização in vitro , Testes Genéticos , Nascido Vivo , Diagnóstico Pré-Implantação , Adulto , Blastômeros , Transtornos Cromossômicos/diagnóstico , Transferência Embrionária , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Intenção de Tratamento , Gravidez , Prognóstico , Adulto Jovem
14.
Small ; 20(14): e2307809, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37988684

RESUMO

Multi-shelled hollow metal-organic frameworks (MH-MOFs) are highly promising as electrode materials due to their impressive surface area and efficient mass transfer capabilities. However, the fabrication of MH-MOFs has remained a formidable challenge. In this study, two types of double-shelled open hollow Prussian blue analogues, one with divalent iron (DHPBA-Fe(II)) and the other with trivalent iron (DHPBA-Fe(III)), through an innovative inner-outer growth strategy are successfully developed. The growth mechanism is found to involve lattice matching growth and ligand exchange processes. Subsequently, DHPBA-Fe(II) and DHPBA-Fe(III) are employed as cathodes in aqueous Zn-ion batteries. Significantly, DHPBA-Fe(II) demonstrated exceptional performance, exhibiting a capacity of 92.5 mAh g-1 at 1 A g-1, and maintaining remarkable stability over an astounding 10 000 cycles. This research is poised to catalyze further exploration into the fabrication techniques of MH-MOFs and offer fresh insights into the intricate interplay between electronic structure and battery performance.

15.
J Transl Med ; 22(1): 145, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347623

RESUMO

BACKGROUND: Excessive energy intake in modern society has led to an epidemic surge in metabolic diseases, such as obesity and type 2 diabetes, posing profound threats to women's reproductive health. However, the precise impact and underlying pathogenesis of energy excess on female reproduction remain unclear. METHODS: We established an obese and hyperglycemic female mouse model induced by a high-fat and high-sucrose (HFHS) diet, then reproductive phenotypes of these mice were evaluated by examing sexual hormones, estrous cycles, and ovarian morphologies. Transcriptomic and precise metabolomic analyses of the ovaries were performed to compare the molecular and metabolic changes in HFHS mice. Finally, orthogonal partial least squares discriminant analysis was performed to compare the similarities of traits between HFHS mice and women with polycystic ovary syndrome (PCOS). RESULTS: The HFHS mice displayed marked reproductive dysfunctions, including elevated serum testosterone and luteinizing hormone levels, irregular estrous cycles, and impaired folliculogenesis, mimicking the clinical manifestations of women with PCOS. Precise metabolomic overview suggested that HFHS diet disrupted amino acid metabolism in the ovaries of female mice. Additionally, transcriptional profiling revealed pronounced disturbances in ovarian steroid hormone biosynthesis and glucolipid metabolism in HFHS mice. Further multi-omics analyses unveiled prominent aberration in ovarian arginine biosynthesis pathway. Notably, comparisons between HFHS mice and a cohort of PCOS patients identified analogous reproductive and metabolic signatures. CONCLUSIONS: Our results provide direct in vivo evidence for the detrimental effects of overnutrition on female reproduction and offer insights into the metabolic underpinnings of PCOS.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome do Ovário Policístico , Feminino , Humanos , Animais , Camundongos , Sacarose/efeitos adversos , Diabetes Mellitus Tipo 2/complicações , Reprodução , Dieta , Perfilação da Expressão Gênica , Dieta Hiperlipídica/efeitos adversos
16.
Plant Cell Environ ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390757

RESUMO

Breeding tree genotypes that are both productive and drought-resistant is a primary goal in forestry. However, the relationships between plant hydraulics and yield at the genotype level, and their temporal stabilities, remain unclear. We selected six poplar genotypes from I-101 (Populus alba) × 84 K (P. alba × Popolus tremula var. glandulosa) for experiments in the first and fourth years after planting in a common garden. Measurements included stem embolism resistance, shoot hydraulic resistance and its partitioning between stems and leaves, vessel- and pit-level anatomy, leaf carbon acquisition capacity, carbon allocation to leaves, and aboveground biomass (yield proxy). Significant genetic variations in hydraulic properties and yield were found among genotypes in both years. Productive genotypes had wide vessels, large thin pit membranes, small pit apertures, and shallow pit chambers. Hydraulic resistance was negatively correlated with yield, enabling high stomatal conductance and assimilation rates. Productive genotypes allocated less aboveground carbon and hydraulic resistance to leaves. Temporally stable trade-offs between stem embolism resistance and yield, and between hydraulic segmentation and yield, were identified. These findings highlight the tight link between hydraulic function and yield and suggest that stable trade-offs may challenge breeding poplar genotypes that are both productive and drought-resistant.

17.
Clin Genet ; 106(2): 161-179, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38544467

RESUMO

We summarize the copy number variations (CNVs) and phenotype spectrum of infantile epileptic spasms syndrome (IESS) in a Chinese cohort. The CNVs were identified by genomic copy number variation sequencing. The CNVs and clinical data were analyzed. 74 IESS children with CNVs were enrolled. 35 kinds of CNVs were identified. There were 11 deletions and 5 duplications not reported previously in IESS, including 2 CNVs not reported in epilepsy. 87.8% were de novo, 9.5% were inherited from mother and 2.7% from father. Mosaicism occurred in one patient with Xq21.31q25 duplication. 16.2% (12/74) were 1p36 deletion, and 20.3% (15/74) were 15q11-q13 duplication. The age of seizure onset ranged from 17 days to 24 months. Seizure types included epileptic spasms, focal seizures, tonic seizures, and myoclonic seizures. All patients displayed developmental delay. Additional features included craniofacial anomaly, microcephaly, congenital heart defects, and hemangioma. 29.7% of patients were seizure-free for more than 12 months, and 70.3% still had seizures after trying 2 or more anti-seizure medications. In conclusion, CNVs is a prominent etiology of IESS. 1p36 deletion and 15q duplication occurred most frequently. CNV detection should be performed in patients with IESS of unknown causes, especially in children with craniofacial anomalies and microcephaly.


Assuntos
Variações do Número de Cópias de DNA , Fenótipo , Espasmos Infantis , Humanos , Variações do Número de Cópias de DNA/genética , Espasmos Infantis/genética , Feminino , Masculino , Lactente , Duplicação Cromossômica/genética , Cromossomos Humanos Par 15/genética , Pré-Escolar , Recém-Nascido , Deleção Cromossômica , Mosaicismo , Aberrações Cromossômicas , Deficiência Intelectual
18.
Microb Pathog ; 194: 106820, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39047803

RESUMO

Macrophages are innate immunity cells which play pivotal roles in infectious immunity. Aeromonas veronii is a zoonotic agent capable of causing sepsis and poses a serious threat to public health. However, few studies have focused on miRNA-mRNA integration analysis to address the immune mechanisms of macrophage response to A. veronii infection. Herein, we characterized the immunophysiological, biochemical, and transcriptome changes of macrophage under A. veronii infection. We found that macrophages infected with A. veronii released large amounts of cytokines and triggered NLRP3-dependent pyroptosis. Subsequently, 603 differentially expressed miRNAs (DEMIs) and 3693 differentially expressed mRNAs (DEMs) were identified by RNA-seq analysis under A. veronii infection. Moreover, integrated analysis of miRNA-mRNA yielded 66 miRNA-target gene pairs composed of 41 DEMIs and 27 DEMs. We next identified the Toll-like receptor, NOD-like receptor, TNF and NF-κB pathways as necessary for macrophage to respond to A. veronii infection. miR-847 and miR-627 were involved in macrophage response to A. veronii infection by negatively regulating Pannexin-1 and thioredoxin interacting protein (TXNIP). Our findings elucidate the molecular mechanism of macrophage response to A. veronii infection at the miRNA level, providing many candidate miRNAs and mRNAs therapeutic targets for the prevention and treatment of A. veornii infectious diseases.


Assuntos
Aeromonas veronii , Citocinas , Infecções por Bactérias Gram-Negativas , Macrófagos , MicroRNAs , RNA Mensageiro , MicroRNAs/genética , MicroRNAs/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Aeromonas veronii/genética , Camundongos , Citocinas/metabolismo , Citocinas/genética , Imunidade Inata/genética , NF-kappa B/metabolismo , Perfilação da Expressão Gênica , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transcriptoma , Humanos , Transdução de Sinais , Regulação da Expressão Gênica , Células RAW 264.7 , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
19.
Chemistry ; : e202402712, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136591

RESUMO

Difunctionalizations of alkenes represent one of the most straightforward protocols to build molecular complexity due to the simultaneous construction of two vicinal bonds cross π-bond of alkenes. It is extremely attractive yet challenging to control the stereochemistry outcome of this event. Over the past years, visible-light and Ni-catalyzed asymmetric difunctionalizations of alkenes provide an environmental benign and promising solution for the construction of saturated carbon centers with the control of regio- and enantioselectivity. In this Concept, the initiative and progress of regio- and enantioselective difunctionalizations of alkenes enabled by visible-light and nickel catalysis has been summarized. Moreover, further efforts and directions for the development of visible-light mediated Ni-catalyzed asymmetric difunctionalizations of alkenes has been discussed.

20.
Reprod Biol Endocrinol ; 22(1): 24, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373962

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is one of the most common reproductive endocrine disorders in females of childbearing age. Various types of ovarian cells work together to maintain normal reproductive function, whose discordance often takes part in the development and progression of PCOS. Understanding the cellular heterogeneity and compositions of ovarian cells would provide insight into PCOS pathogenesis, but are, however, not well understood. Transcriptomic characterization of cells isolated from PCOS cases have been assessed using bulk RNA-seq but cells isolated contain a mixture of many ovarian cell types. METHODS: Here we utilized the reference scRNA-seq data from human adult ovaries to deconvolute and estimate cell proportions and dysfunction of ovarian cells in PCOS, by integrating various granulosa cells(GCs) transcriptomic data. RESULTS: We successfully defined 22 distinct cell clusters of human ovarian cells. Then after transcriptome integration, we obtained a gene expression matrix with 13,904 genes within 30 samples (15 control vs. 15 PCOS). Subsequent deconvolution analysis revealed decreased proportion of small antral GCs and increased proportion of KRT8high mural GCs, HTRA1high cumulus cells in PCOS, especially increased differentiation from small antral GCs to KRT8high mural GCs. For theca cells, the abundance of internal theca cells (TCs) and external TCs was both increased. Less TCF21high stroma cells (SCs) and more STARhigh SCs were observed. The proportions of NK cells and monocytes were decreased, and T cells occupied more in PCOS and communicated stronger with inTCs and exTCs. In the end, we predicted the candidate drugs which could be used to correct the proportion of ovarian cells in patients with PCOS. CONCLUSIONS: Taken together, this study provides insights into the molecular alterations and cellular compositions in PCOS ovarian tissue. The findings might contribute to our understanding of PCOS pathophysiology and offer resource for PCOS basic research.


Assuntos
Síndrome do Ovário Policístico , Adulto , Feminino , Humanos , Síndrome do Ovário Policístico/metabolismo , Transcriptoma , Células da Granulosa/metabolismo , Perfilação da Expressão Gênica , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa