Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(1): e2304844, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37653594

RESUMO

Fabricating highly efficient and long-life redox bifunctional electrocatalysts is vital for oxygen-related renewable energy devices. To boost the bifunctional catalytic activity of Fe-N-C single-atom catalysts, it is imperative to fine-tune the coordination microenvironment of the Fe sites to optimize the adsorption/desorption energies of intermediates during oxygen reduction/evolution reactions (ORR/OER) and simultaneously avoid the aggregation of atomically dispersed metal sites. Herein, a strategy is developed for fabricating a free-standing electrocatalyst with atomically dispersed Fe sites (≈0.89 wt.%) supported on N, F, and S ternary-doped hollow carbon nanofibers (FeN4 -NFS-CNF). Both experimental and theoretical findings suggest that the incorporation of ternary heteroatoms modifies the charge distribution of Fe active centers and enhances defect density, thereby optimizing the bifunctional catalytic activities. The efficient regulation isolated Fe centers come from the dual confinement of zeolitic imidazole framework-8 (ZIF-8) and polymerized ionic liquid (PIL), while the precise formation of distinct hierarchical three-dimensional porous structure maximizes the exposure of low-doping Fe active sites and enriched heteroatoms. FeN4 -NFS-CNF achieves remarkable electrocatalytic activity with a high ORR half-wave potential (0.90 V) and a low OER overpotential (270 mV) in alkaline electrolyte, revealing the benefit of optimizing the microenvironment of low-doping iron single atoms in directing bifunctional catalytic activity.

2.
Adv Mater ; 36(26): e2311272, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38377229

RESUMO

The rational construction of highly active and durable oxygen-reactive electrocatalysts for oxygen reduction/evolution reaction (ORR/OER) plays a critical role in rechargeable metal-air batteries. It is pivotal to achieve optimal utilization of electrocatalytically active sites and valid control of the high specific internal surface area. Inspiration for designing electrocatalysts can come from nature, as it is full of precisely manipulated and highly efficient structures. Herein, inspired by earthworms fertilizing soil, a 3D carbon nanofibrous electrocatalyst with multiple interconnected nanoconfined channels, cobalt-based heterojunction active particles and enriched N, S heteroatoms (Co/Co3O4/CoF2@NSC with confined channels) is rationally designed, showing superior bifunctional electrocatalytic activity in alkaline electrolyte, even outperforming that of benchmark Pt/C-RuO2 catalyst. This work demonstrates a new method for porous structural regulation, in which the internal confined channels within the nanofibers are controllably formed by the spontaneous migration of cobalt-based nanoparticles under a CO2 atmosphere. Theoretical analysis reveals that constructing Co/Co3O4/CoF2@NSC electrocatalyst with confined channels can greatly adjust the electron distribution, effectively lower the reaction barrier of inter-mediate and reduce the OER/ORR overpotential. This work introduces a novel and nature-inspired strategy for designing efficient bifunctional electrocatalysts with well-designed architectures.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37413828

RESUMO

Cypate, a heptamethine cyanine dye, is a prototypic near-infrared (NIR) theranostic agent for optical imaging and photothermal therapy. In the present study, a selective, sensitive, and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantitation of cypate in mouse plasma. The chromatographic separation was achieved using a short C18 column (2.1 mm × 50 mm, 5 µm) with a run time of 5 min. The MS was operated in multiple reaction monitoring (MRM) mode via positive electrospray ionization. The ion transitions for cypate and internal standard IR-820 were m/z 626.3 â†’ 596.3 and m/z 827.4 â†’ 330.2, respectively. The method was linear over a concentration range of 1.0-500 ng/mL. The within-run and between-run precision was less than 14.4% with accuracy in the range of -13.4% ∼ 9.8%. The validated method was successfully applied to a pharmacokinetic study of cypate in mice following intravenous administration.


Assuntos
Espectrometria de Massas em Tandem , Animais , Camundongos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Medicina de Precisão , Calibragem , Reprodutibilidade dos Testes , Técnicas de Diluição do Indicador
4.
Small Methods ; 7(9): e2300227, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37254235

RESUMO

The shortage of fossil fuels and freshwater resources has become a serious global issue. Using solar energy to extract clean water with a photothermal conversion technology is a green and sustainable desalination method. Integrated electricity generation during the desalination process maximizes energy utilization efficiency. Herein, a solar-driven steam and electricity generation (SSEG) system based on an all-in-one evaporator is prepared via a scalable technology. Carbon black is selected as the absorber for solar energy harvesting as well as the functional substance for simultaneous electricity generation. Fabric substrate with flexible structure, porous channel, and capillary effect is vital for directional brine supply, multiple solar absorption, and thermal management. The high evaporation rate (1.87 kg m-2  h-1 ) and voltage output (324 mV) can be achieved with an all-in-one device. The stable electricity output can be maintained over 40000 s. The SSEG performance remains constant after 15 operation cycles or 20 wash cycles. The integrated device balances excellent effectiveness and practicality, providing a viable path for clean desalination and electricity generation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa