Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Mol Cell Cardiol ; 188: 1-14, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38246086

RESUMO

Stem cells represent an attractive resource for cardiac regeneration. However, the survival and function of transplanted stem cells is poor and remains a major challenge for the development of effective therapies. As two main cell types currently under investigation in heart repair, mesenchymal stromal cells (MSCs) indirectly support endogenous regenerative capacities after transplantation, while induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) functionally integrate into the damaged myocardium and directly contribute to the restoration of its pump function. These two cell types are exposed to a common microenvironment with many stressors in ischemic heart tissue. This review summarizes the research progress on the mechanisms and challenges of MSCs and iPSC-CMs in post-MI heart repair, introduces several randomized clinical trials with 3D-mapping-guided cell therapy, and outlines recent findings related to the factors that affect the survival and function of stem cells. We also discuss the future directions for optimization such as biomaterial utilization, cell combinations, and intravenous injection of engineered nucleus-free MSCs.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Humanos , Infarto do Miocárdio/terapia , Transplante de Células-Tronco , Miócitos Cardíacos
2.
J Mol Cell Cardiol ; 160: 27-41, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34224725

RESUMO

Irisin, the cleaved form of the fibronectin type III domain containing 5 (FNDC5) protein, is involved in metabolism and inflammation. Recent findings indicated that irisin participated in cardiovascular physiology and pathology. In this study, we investigated the effects of FNDC5/irisin on diabetic cardiomyopathy (DCM) in type 2 diabetic db/db mice. Downregulation of myocardial FNDC5/irisin protein expression and plasma irisin levels was observed in db/db mice compared to db/+ controls. Moreover, echocardiography revealed that db/db mice exhibited normal cardiac systolic function and impaired diastolic function. Adverse structural remodeling, including cardiomyocyte apoptosis, myocardial fibrosis, and cardiac hypertrophy were observed in the hearts of db/db mice. Sixteen-week-old db/db mice were intramyocardially injected with adenovirus encoding FNDC5 or treated with recombinant human irisin via a peritoneal implant osmotic pump for 4 weeks. Both overexpression of myocardial FNDC5 and exogenous irisin administration attenuated diastolic dysfunction and cardiac structural remodeling in db/db mice. Results from in vitro studies revealed that FNDC5/irisin protein expression was decreased in high glucose (HG)/high fat (HF)-treated cardiomyocytes. Increased levels of inducible nitric oxide synthase (iNOS), NADPH oxidase 2 (NOX2), 3-nitrotyrosine (3-NT), reactive oxygen species (ROS), and peroxynitrite (ONOO-) in HG/HF-treated H9C2 cells provided evidence of oxidative/nitrosative stress, which was alleviated by treatment with FNDC5/irisin. Moreover, the mitochondria membrane potential (ΔΨm) was decreased and cytochrome C was released from mitochondria with increased levels of cleaved caspase-3 in HG/HF-treated H9C2 cells, indicating the presence of mitochondria-dependent apoptosis, which was partially reversed by FNDC5/irisin treatment. Mechanistic studies showed that activation of integrin αVß5-AKT signaling and attenuation of oxidative/nitrosative stress were responsible for the cardioprotective effects of FNDC5/irisin. Therefore, FNDC5/irisin mediates cardioprotection in DCM by inhibiting myocardial apoptosis, myocardial fibrosis, and cardiac hypertrophy. These findings implicate that FNDC5/irisin as a potential therapeutic intervention for DCM, especially in type 2 diabetes mellitus (T2DM).


Assuntos
Cardiotônicos/administração & dosagem , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cardiomiopatias Diabéticas/sangue , Cardiomiopatias Diabéticas/tratamento farmacológico , Fibronectinas/administração & dosagem , Estresse Nitrosativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Vitronectina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Cardiomegalia/prevenção & controle , Cardiotônicos/sangue , Modelos Animais de Doenças , Fibronectinas/sangue , Fibronectinas/genética , Masculino , Camundongos , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteínas Recombinantes/administração & dosagem , Resultado do Tratamento , Remodelação Ventricular/efeitos dos fármacos
3.
Stem Cells ; 37(2): 190-201, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30372567

RESUMO

Smooth muscle cells (SMCs), which form the walls of blood vessels, play an important role in vascular development and the pathogenic process of vascular remodeling. However, the molecular mechanisms governing SMC differentiation remain poorly understood. Glycoprotein M6B (GPM6B) is a four-transmembrane protein that belongs to the proteolipid protein family and is widely expressed in neurons, oligodendrocytes, and astrocytes. Previous studies have revealed that GPM6B plays a role in neuronal differentiation, myelination, and osteoblast differentiation. In the present study, we found that the GPM6B gene and protein expression levels were significantly upregulated during transforming growth factor-ß1 (TGF-ß1)-induced SMC differentiation. The knockdown of GPM6B resulted in the downregulation of SMC-specific marker expression and repressed the activation of Smad2/3 signaling. Moreover, GPM6B regulates SMC Differentiation by Controlling TGF-ß-Smad2/3 Signaling. Furthermore, we demonstrated that similar to p-Smad2/3, GPM6B was profoundly expressed and coexpressed with SMC differentiation markers in embryonic SMCs. Moreover, GPM6B can regulate the tightness between TßRI, TßRII, or Smad2/3 by directly binding to TßRI to activate Smad2/3 signaling during SMC differentiation, and activation of TGF-ß-Smad2/3 signaling also facilitate the expression of GPM6B. Taken together, these findings demonstrate that GPM6B plays a crucial role in SMC differentiation and regulates SMC differentiation through the activation of TGF-ß-Smad2/3 signaling via direct interactions with TßRI. This finding indicates that GPM6B is a potential target for deriving SMCs from stem cells in cardiovascular regenerative medicine. Stem Cells 2018 Stem Cells 2019;37:190-201.


Assuntos
Glicoproteínas de Membrana/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Animais , Diferenciação Celular/fisiologia , Células HEK293 , Humanos , Camundongos , Miócitos de Músculo Liso/citologia , Transdução de Sinais , Transfecção , Regulação para Cima
4.
Biochem Biophys Res Commun ; 516(4): 1103-1109, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31280865

RESUMO

Atherosclerosis is characterized by the accumulation of excess cholesterol in plaques. Reverse cholesterol transport (RCT) plays a key role in the removal of cholesterol. In the present study, we examined the effect of thioredoxin-1 (Trx-1) on RCT and explored the underlying mechanism. We found that Trx-1 promoted RCT in vivo, as did T0901317, a known liver X receptor (LXR) ligand. T0901317 also inhibited the development of atherosclerotic plaques but promoted liver steatosis. Furthermore, Trx-1 promoted macrophage cholesterol efflux to apoAI in vitro. Mechanistically, Trx-1 promoted nuclear translocation of LXRα and induced the expression of ATP-binding cassette transporter A1 (ABCA1). Apolipoprotein E knockout (apoE-/-) mice fed an atherogenic diet were daily injected intraperitoneally with saline or Trx-1 (0.33 mg/kg). Trx-1 treatment significantly inhibited the development of atherosclerosis and induced the expression of ABCA1 in macrophages retrieved from apoE-/- mice. Moreover, the liver steatosis was attenuated by Trx-1. Overall, we demonstrated that Trx-1 promotes RCT by upregulating ABCA1 expression through induction of nuclear translocation of LXRα, and protects liver from steatosis.


Assuntos
Colesterol/metabolismo , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Tiorredoxinas/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Transporte Biológico , Fígado Gorduroso/patologia , Fígado/patologia , Receptores X do Fígado/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL
5.
Biochem Biophys Res Commun ; 480(1): 106-113, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27697526

RESUMO

Diabetic mellitus (DM) portends poor prognosis concerning pressure overloaded heart disease. Branched-chain amino acids (BCAAs), elements of essential amino acids, have been found altered in its catabolism in diabetes decades ago. However, the relationship between BCAAs and DM induced deterioration of pressure overloaded heart disease remains controversial. This study is aimed to investigate the particular effect of BCKA, a metabolite of BCAA, on myocardial injury induced by pressure overloaded. Primary cardiomyocytes were incubated with or without BCKA and followed by treatment with isoproterenol (ISO); then cell viability was detected by CCK8 and apoptosis was examined by TUNNEL stain and caspase-3 activity analysis. Compared to non-BCKA incubated group, BCKA incubation decreased cell survival and increased apoptosis concentration dependently. Furthermore, Western blot assay showed that mTORC2-Akt pathway was significantly inactivated by BCKA incubation. Moreover, overexpression of rictor, a vital component of mTORC2, significantly abolished the adverse effects of BCKA on apoptosis susceptibility of cardiomyocytes. These results indicate that BCKA contribute to vulnerability of cardiomyocytes in stimulated stress via inactivation of mTORC2-Akt pathway.


Assuntos
Aminoácidos de Cadeia Ramificada/farmacologia , Apoptose/efeitos dos fármacos , Complexos Multiproteicos/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Aminoácidos de Cadeia Ramificada/química , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Isoproterenol/farmacologia , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Proteína Companheira de mTOR Insensível à Rapamicina , Transdução de Sinais/efeitos dos fármacos
6.
Cardiovasc Res ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832923

RESUMO

AIMS: ßII spectrin is a cytoskeletal protein known to be tightly linked to heart development and cardiovascular electrophysiology. However, the roles of ßII spectrin in cardiac contractile function and pathological post-myocardial infarction remodeling remain unclear. Here, we investigated whether and how ßII spectrin, the most common isoform of non-erythrocytic spectrin in cardiomyocytes, is involved in cardiac contractile function and ischemia/reperfusion (I/R) injury. METHODS AND RESULTS: We observed that the levels of serum ßII spectrin breakdown products (ßII SBDPs) were significantly increased in patients with acute myocardial infarction (AMI). Concordantly, ßII spectrin was degraded into ßII SBDPs by calpain in mouse hearts after I/R injury. Using tamoxifen-inducible cardiac-specific ßII spectrin knockout mice, we found that deletion of ßII spectrin in the adult heart resulted in spontaneous development of cardiac contractile dysfunction, cardiac hypertrophy and fibrosis at 5 weeks after tamoxifen treatment. Moreover, at 1 week after tamoxifen treatment, although spontaneous cardiac dysfunction in cardiac-specific ßII spectrin knockout mice had not developed, deletion of ßII spectrin in the heart exacerbated I/R-induced cardiomyocyte death and heart failure. Furthermore, restoration of ßII spectrin expression via adenoviral small activating RNA (saRNA) delivery into the heart reduced I/R injury. Immunoprecipitation coupled with mass spectrometry (IP-LC-MS/MS) analyses and functional studies revealed that ßII spectrin is indispensable for mitochondrial complex I activity and respiratory function. Mechanistically, ßII spectrin promotes translocation of NADH:ubiquinone oxidoreductase 75 kDa Fe-S protein 1 (NDUFS1) from the cytosol to mitochondria by crosslinking with actin filaments (F-actin) to maintain F-actin stability. CONCLUSION: ßII spectrin is an essential cytoskeletal element for preserving mitochondrial homeostasis and cardiac function. Defects in ßII spectrin exacerbate cardiac I/R injury.

7.
Theranostics ; 13(6): 1759-1773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064880

RESUMO

Aims: The invasive intramyocardial injection of mesenchymal stromal cells (MSCs) allows for limited repeat injections and shows poor therapeutic efficacy against ischemic heart failure. Intravenous injection is an alternative method because this route allows for repeated, noninvasive, and easy delivery. However, the lack of targeting of MSCs hinders the ability of these cells to accumulate in the ischemic area after intravenous injections. We investigated whether and how the overexpression of colony-stimulating factor 2 receptor beta subunit (CSF2RB) may regulate the cardiac homing of MSCs and their cardioprotective effects against ischemic heart failure. Methods and Results: Adult mice were subjected to myocardial ischemia/reperfusion (MI/R) or sham operations. We observed significantly higher CSF2 protein expression and secretion by the ischemic heart from 1 day to 2 weeks after MI/R. Mouse adipose tissue-derived MSCs (ADSCs) were infected with adenovirus harboring CSF2RB or control adenovirus. Enhanced green fluorescent protein (EGFP)-labeled ADSCs were intravenously injected into MI/R mice every three days for a total of 7 times. Compared with ADSCs infected with control adenovirus, intravenously delivered ADSCs overexpressing CSF2RB exhibited markedly increased cardiac homing. Histological analysis revealed that CSF2RB overexpression significantly enhanced the ADSC-mediated proangiogenic, antiapoptotic, and antifibrotic effects. More importantly, ADSCs overexpressing CSF2RB significantly increased the left ventricular ejection fraction and cardiac contractility/relaxation in MI/R mice. In vitro experiments demonstrated that CSF2RB overexpression increases the migratory capacity and reduces the hypoxia/reoxygenation-induced apoptosis of ADSCs. We identified STAT5 phosphorylation as the key mechanism underlying the effects of CSF2RB on promoting ADSC migration and inhibiting ADSC apoptosis. RNA sequencing followed by cause-effect analysis revealed that CSF2RB overexpression increases the expression of the ubiquitin ligase RNF4. Coimmunoprecipitation and coimmunostaining experiments showed that RNF4 binds to phosphorylated STAT5. RNF4 knockdown reduced STAT5 phosphorylation as well as the antiapoptotic and promigratory actions of ADSCs overexpressing CSF2RB. Conclusions: We demonstrate for the first time that CSF2RB overexpression optimizes the efficacy of intravenously delivered MSCs in the treatment of ischemic heart injury by increasing the response of the MSCs to a CSF2 gradient and CSF2RB-dependent STAT5/RNF4 activation.


Assuntos
Subunidade beta Comum dos Receptores de Citocinas , Insuficiência Cardíaca , Transplante de Células-Tronco Mesenquimais , Isquemia Miocárdica , Animais , Camundongos , Insuficiência Cardíaca/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Isquemia Miocárdica/terapia , Fator de Transcrição STAT5/metabolismo , Volume Sistólico , Função Ventricular Esquerda , Subunidade beta Comum dos Receptores de Citocinas/metabolismo
8.
Theranostics ; 10(12): 5623-5640, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373236

RESUMO

Rationale: Myocardial vulnerability to ischemia/reperfusion (I/R) injury is strictly regulated by energy substrate metabolism. Branched chain amino acids (BCAA), consisting of valine, leucine and isoleucine, are a group of essential amino acids that are highly oxidized in the heart. Elevated levels of BCAA have been implicated in the development of cardiovascular diseases; however, the role of BCAA in I/R process is not fully understood. The present study aims to determine how BCAA influence myocardial energy substrate metabolism and to further clarify the pathophysiological significance during cardiac I/R injury. Methods: Parameters of glucose and fatty acid metabolism were measured by seahorse metabolic flux analyzer in adult mouse cardiac myocytes with or without BCAA incubation. Chronic accumulation of BCAA was induced in mice receiving oral BCAA administration. A genetic mouse model with defective BCAA catabolism was also utilized. Mice were subjected to MI/R and the injury was assessed extensively at the whole-heart, cardiomyocyte, and molecular levels. Results: We confirmed that chronic accumulation of BCAA enhanced glycolysis and fatty acid oxidation (FAO) but suppressed glucose oxidation in adult mouse ventricular cardiomyocytes. Oral gavage of BCAA enhanced FAO in cardiac tissues, exacerbated lipid peroxidation toxicity and worsened myocardial vulnerability to I/R injury. Etomoxir, a specific inhibitor of FAO, rescued the deleterious effects of BCAA on I/R injury. Mechanistically, valine, leucine and their corresponding branched chain α-keto acid (BCKA) derivatives, but not isoleucine and its BCKA derivative, transcriptionally upregulated peroxisome proliferation-activated receptor alpha (PPAR-α). BCAA/BCKA induced PPAR-α upregulation through the general control nonderepresible-2 (GCN2)/ activating transcription factor-6 (ATF6) pathway. Finally, in a genetic mouse model with BCAA catabolic defects, chronic accumulation of BCAA increased FAO in myocardial tissues and sensitized the heart to I/R injury, which could be reversed by adenovirus-mediated PPAR-α silencing. Conclusions: We identify BCAA as an important nutrition regulator of myocardial fatty acid metabolism through transcriptional upregulation of PPAR-α. Chronic accumulation of BCAA, caused by either dietary or genetic factors, renders the heart vulnerable to I/R injury via exacerbating lipid peroxidation toxicity. These data support the notion that BCAA lowering methods might be potentially effective cardioprotective strategies, especially among patients with diseases characterized by elevated levels of BCAA, such as obesity and diabetes.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Aminoácidos de Cadeia Ramificada/toxicidade , Ácidos Graxos/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , PPAR alfa/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Metabolismo Energético , Glucose/metabolismo , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/induzido quimicamente , Traumatismo por Reperfusão Miocárdica/metabolismo , Oxirredução
9.
Mol Med Rep ; 21(2): 549-556, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31974605

RESUMO

The purpose of the present study was to explore aging­associated cardiac dysfunction and the possible mechanism by which swimming exercise modulates cardiac dysfunction in aged mice. Aged mice were divided into two groups: i) Aged mice; and ii) aged mice subjected to swimming exercises. Another cohort of 4­month­old male mice served as the control group. Cardiac structure and function in mice were analyzed using hematoxylin and eosin staining, and echocardiography. The levels of oxidative stress were determined by measuring the levels of superoxide dismutase, malondialdehyde and reactive oxygen species (ROS). Levels of the endoplasmic reticulum (ER) stress­related protein PKR­like ER kinase, glucose­regulated protein 78 and C/EBP homologous protein were determined to evaluate the level of ER stress. The aged group exhibited an abnormal cardiac structure and decreased cardiac function, both of which were ameliorated by swimming exercise. The hearts of the aged mice exhibited pronounced oxidative and ER stress, which were ameliorated by exercise, and was accompanied by the reactivation of myocardial cGMP and suppression of cGMP­specific phosphodiesterase type 5 (PDE5). The inhibition of PDE5 attenuated age­induced cardiac dysfunction, blocked ROS production and suppressed ER stress. An ER stress inducer abolished the beneficial effects of the swimming exercise on cardiac function and increased ROS production. The present study suggested that exercise restored cardiac function in mice with age­induced cardiac dysfunction by inhibiting oxidative stress and ER stress, and increasing cGMP­protein kinase G signaling.


Assuntos
Envelhecimento/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Estresse do Retículo Endoplasmático , Miocárdio/patologia , Condicionamento Físico Animal , Natação/fisiologia , Animais , Regulação para Baixo , Masculino , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
10.
Diabetes ; 69(6): 1164-1177, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32184272

RESUMO

Branched chain amino acids (BCAAs) are associated with the progression of obesity-related metabolic disorders, including type 2 diabetes and nonalcoholic fatty liver disease. However, whether BCAAs disrupt the homeostasis of hepatic glucose and lipid metabolism remains unknown. In this study, we observed that BCAAs supplementation significantly reduced high-fat (HF) diet-induced hepatic lipid accumulation while increasing the plasma lipid levels and promoting muscular and renal lipid accumulation. Further studies demonstrated that BCAAs supplementation significantly increased hepatic gluconeogenesis and suppressed hepatic lipogenesis in HF diet-induced obese (DIO) mice. These phenotypes resulted from severe attenuation of Akt2 signaling via mTORC1- and mTORC2-dependent pathways. BCAAs/branched-chain α-keto acids (BCKAs) chronically suppressed Akt2 activation through mTORC1 and mTORC2 signaling and promoted Akt2 ubiquitin-proteasome-dependent degradation through the mTORC2 pathway. Moreover, the E3 ligase Mul1 played an essential role in BCAAs/BCKAs-mTORC2-induced Akt2 ubiquitin-dependent degradation. We also demonstrated that BCAAs inhibited hepatic lipogenesis by blocking Akt2/SREBP1/INSIG2a signaling and increased hepatic glycogenesis by regulating Akt2/Foxo1 signaling. Collectively, these data demonstrate that in DIO mice, BCAAs supplementation resulted in serious hepatic metabolic disorder and severe liver insulin resistance: insulin failed to not only suppress gluconeogenesis but also activate lipogenesis. Intervening BCAA metabolism is a potential therapeutic target for severe insulin-resistant disease.


Assuntos
Aminoácidos de Cadeia Ramificada/farmacologia , Dieta Hiperlipídica/efeitos adversos , Transtornos do Metabolismo dos Lipídeos/induzido quimicamente , Fígado/efeitos dos fármacos , Obesidade/complicações , Proteínas Proto-Oncogênicas c-akt/metabolismo , Aminoácidos de Cadeia Ramificada/administração & dosagem , Animais , Células Cultivadas , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/efeitos adversos , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Rim/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Distribuição Aleatória , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
11.
Theranostics ; 9(13): 3687-3706, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281507

RESUMO

Increasing evidence has implicated the important role of mitochondrial pathology in diabetic cardiomyopathy (DCM), while the underlying mechanism remains largely unclear. The aim of this study was to investigate the role of mitochondrial dynamics in the pathogenesis of DCM and its underlying mechanisms. Methods: Obese diabetic (db/db) and lean control (db/+) mice were used in this study. Mitochondrial dynamics were analyzed by transmission electron microscopy in vivo and by confocal microscopy in vitro. Results: Diabetic hearts from 12-week-old db/db mice showed excessive mitochondrial fission and significant reduced expression of Mfn2, while there was no significant alteration or slight change in the expression of other dynamic-related proteins. Reconstitution of Mfn2 in diabetic hearts inhibited mitochondrial fission and prevented the progression of DCM. In an in-vitro study, cardiomyocytes cultured in high-glucose and high-fat (HG/HF) medium showed excessive mitochondrial fission and decreased Mfn2 expression. Reconstitution of Mfn2 restored mitochondrial membrane potential, suppressed mitochondrial oxidative stress and improved mitochondrial function in HG/HF-treated cardiomyocytes through promoting mitochondrial fusion. In addition, the down-regulation of Mfn2 expression in HG/HF-treated cardiomyocytes was induced by reduced expression of PPARα, which positively regulated the expression of Mfn2 by directly binding to its promoter. Conclusion: Our study provides the first evidence that imbalanced mitochondrial dynamics induced by down-regulated Mfn2 contributes to the development of DCM. Targeting mitochondrial dynamics by regulating Mfn2 might be a potential therapeutic strategy for DCM.


Assuntos
Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/genética , GTP Fosfo-Hidrolases/genética , Dinâmica Mitocondrial , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Cardiomegalia , Dieta Hiperlipídica , Regulação para Baixo/efeitos dos fármacos , Fibrose , GTP Fosfo-Hidrolases/metabolismo , Glucose/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Dinâmica Mitocondrial/efeitos dos fármacos , Miocárdio/patologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , PPAR alfa/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Ratos
12.
Sci Rep ; 8(1): 9579, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29942023

RESUMO

Recent studies have identified SNP rs7903456 of FAM35A to be associated with gout. Because of the close connections between hyperuricemia and gout, we hypothesized that the effect of rs7903456 on gout might be mediated by hyperuricemia or its related quantitative trait, uric acid level. We investigated the association between 31 SNPs of FAM35A, including rs7903456, and hyperuricemia based on 2,773 hyperuricemia patients and controls. We fitted a simple model for each of these 31 SNPs to screen the candidate SNP for further analyses. Moreover, we selected potential confounders and fitted a multivariate model to investigate the adjusted effects of the targeted SNPs. Both disease status of hyperuricemia and blood uric acid level were considered as the main phenotype. We have identified rs7903456 to be associated with hyperuricemia and uric acid level. The significant signal was identified between rs7903456 and uric acid level after adjusted by several potential confounders. Our findings showed that the T allele of rs7903456 could increase the uric acid level by ~10 mmol/L on average after adjusting several biochemical and clinical variables. Our findings indicated that the previously identified effects of rs7903456 on gout might partly be mediated by its effect on uric acid levels.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Hiperuricemia/genética , Polimorfismo de Nucleotídeo Único , Adulto , Estudos de Casos e Controles , Biologia Computacional , Feminino , Humanos , Hiperuricemia/sangue , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Ácido Úrico/sangue
13.
Cardiovasc Res ; 114(10): 1335-1349, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29668847

RESUMO

Aims: The farnesoid X receptor (FXR) is a member of the metabolic nuclear receptor superfamily that plays a critical regulatory role in cardiovascular physiology/pathology. However, the role of systemic FXR activation in the chronic phase in myocardial infarction (MI)-induced cardiac remodelling and dysfunction remains unclear. In this study, we aimed to elucidate the role of long-term FXR activation on post-MI cardiac remodelling and dysfunction. Methods and results: Mice underwent either MI surgery or sham operation. At 1 week after MI, both sham and MI mice were gavaged with 25 mg/kg/d of a synthetic FXR agonist (GW4064) or a vehicle control for 7 weeks, and cardiac performance was assessed by consecutive echocardiography studies. Administration of GW4064 significantly increased left ventricular ejection fraction at 4 weeks and 8 weeks after MI (both P < 0.01). Moreover, GW4064 treatment increased angiogenesis and mitochondrial biogenesis, reduced cardiomyocyte loss and inflammation, and ameliorated cardiac remodelling as evidenced by heart weight, lung weight, atrial natriuretic peptide/brain natriuretic peptide levels, and myocardial fibrosis at 8 weeks post-MI. At the molecular level, GW4064 significantly increased FXR mRNA expression and transcriptional activity in heart tissue. Moreover, over-expression of myocardial FXR failed to exert significant cardioprotection in vivo, indicating that GW4064 improved post-MI heart remodelling and function independent of myocardial FXR expression/activity. Among the four down-stream soluble molecules of FXR, plasma adiponectin was most significantly increased by GW4064. In cultured adipocytes, GW4064 increased mRNA levels and protein expression of adiponectin. Conditioned medium of GW4064-treated adipocytes activated AMPK-PGC-1α signalling and reduced hypoxia-induced cardiomyocyte apoptosis, all of which were attenuated by an adiponectin neutralizing anti-body. More importantly, when knocking-out adiponectin in mice, the cardioprotective effects of GW4064 were attenuated. Conclusions: We are the first to show that FXR agonism ameliorated post-MI cardiac dysfunction and remodelling by stimulating adiponectin secretion. Thus, we demonstrated that FXR agonism is a potential therapeutic strategy in post-MI heart failure.


Assuntos
Adiponectina/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Isoxazóis/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/agonistas , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Células 3T3-L1 , Adiponectina/deficiência , Adiponectina/genética , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Biogênese de Organelas , Estresse Oxidativo/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Volume Sistólico/efeitos dos fármacos , Fatores de Tempo , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
14.
Mol Med Rep ; 16(5): 6269-6275, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28849146

RESUMO

Smoking is highly associated with cardiovascular diseases. However, the effect of nicotine, a key ingredient in smoking products, on cardiomyocyte apoptosis remains controversial. The present study aims to clarify the role of nicotine on cardiomyocyte cell apoptosis and to investigate the underlying mechanism. In the present study, H9C2 cells were exposed to nicotine at various concentrations (0, 10 and 100 µM) for 48 h. Cell Counting Kit­8 and TUNEL assays were performed to assess cell viability and apoptosis, respectively, and reverse transcription­quantitative polymerase chain reaction and western blot analysis were used to investigate the mRNA and protein expression. PYR­41, a ubiquitin E1 inhibitor, was employed to investigate whether the ubiquitin­proteasome system was involved in the downregulation of Akt. An Akt1 overexpression plasmid was used to demonstrate the role of Akt in H9C2 cells apoptosis. Tetratricopeptide repeat domain 3 (TTC3) small interfering RNA (siRNA) was used to investigate the effect of TTC3 on Akt protein degradation. The results demonstrated that nicotine induced apoptosis in H9C2 cells compared with control cells (P<0.05). The protein level of Akt was downregulated by nicotine in a concentration­dependent manner (P<0.05). PYR­41 treatment restored the protein level of Akt. The cell viability was significantly improved by Akt overexpression when cells were exposed to nicotine at 10 µM, compared with control cells. Nicotine also upregulated the level of TTC3 mRNA (P<0.05) and the protein level of Akt, and cell viability was recovered by TTC3 siRNA. In conclusion, the current study demonstrated that nicotine induced H9C2 cell apoptosis via Akt protein degradation, which may be mediated by TTC3.


Assuntos
Apoptose/efeitos dos fármacos , Nicotina/farmacologia , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Ubiquitina/metabolismo , Regulação para Cima/efeitos dos fármacos
15.
EBioMedicine ; 13: 157-167, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27843095

RESUMO

The Western meat-rich diet is both high in protein and fat. Although the hazardous effect of a high fat diet (HFD) upon liver structure and function is well recognized, whether the co-presence of high protein intake contributes to, or protects against, HF-induced hepatic injury remains unclear. Increased intake of branched chain amino acids (BCAA, essential amino acids compromising 20% of total protein intake) reduces body weight. However, elevated circulating BCAA is associated with non-alcoholic fatty liver disease and injury. The mechanisms responsible for this quandary remain unknown; the role of BCAA in HF-induced liver injury is unclear. Utilizing HFD or HFD+BCAA models, we demonstrated BCAA supplementation attenuated HFD-induced weight gain, decreased fat mass, activated mammalian target of rapamycin (mTOR), inhibited hepatic lipogenic enzymes, and reduced hepatic triglyceride content. However, BCAA caused significant hepatic damage in HFD mice, evidenced by exacerbated hepatic oxidative stress, increased hepatic apoptosis, and elevated circulation hepatic enzymes. Compared to solely HFD-fed animals, plasma levels of free fatty acids (FFA) in the HFD+BCAA group are significantly further increased, due largely to AMPKα2-mediated adipocyte lipolysis. Lipolysis inhibition normalized plasma FFA levels, and improved insulin sensitivity. Surprisingly, blocking lipolysis failed to abolish BCAA-induced liver injury. Mechanistically, hepatic mTOR activation by BCAA inhibited lipid-induced hepatic autophagy, increased hepatic apoptosis, blocked hepatic FFA/triglyceride conversion, and increased hepatocyte susceptibility to FFA-mediated lipotoxicity. These data demonstrated that BCAA reduces HFD-induced body weight, at the expense of abnormal lipolysis and hyperlipidemia, causing hepatic lipotoxicity. Furthermore, BCAA directly exacerbate hepatic lipotoxicity by reducing lipogenesis and inhibiting autophagy in the hepatocyte.


Assuntos
Adipócitos/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Hepatócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/efeitos dos fármacos , Aminoácidos de Cadeia Ramificada/farmacologia , Animais , Autofagia/efeitos dos fármacos , Glicemia , Peso Corporal , Diabetes Mellitus Experimental , Dieta Hiperlipídica , Modelos Animais de Doenças , Hepatócitos/efeitos dos fármacos , Hiperlipidemias/etiologia , Hiperlipidemias/metabolismo , Lipogênese/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Testes de Função Hepática , Masculino , Camundongos , Camundongos Obesos , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa