Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 96(19): 7661-7668, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38687969

RESUMO

The development of sensitive, selective, and rapid methods to detect bacteria in complex media is essential to ensuring human health. Virulence factors, particularly pore-forming toxins (PFTs) secreted by pathogenic bacteria, play a crucial role in bacterial diseases and serve as indicators of disease severity. In this study, a nanochannel-based label-free electrochemical sensing platform was developed for the detection of specific pathogenic bacteria based on their secreted PFTs. In this design, wood substrate channels were functionalized with a Fe-based metal-organic framework (FeMOF) and then protected with a layer of phosphatidylcholine (PC)-based phospholipid membrane (PM) that serves as a peroxidase mimetic and a channel gatekeeper, respectively. Using Staphylococcus aureus (S. aureus) as the model bacteria, the PC-specific PFTs secreted by S. aureus perforate the PM layer. Now exposed to the FeMOF, uncharged 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) molecules in the electrolyte undergo oxidation to cationic products (ABTS•+). The measured transmembrane ionic current indicates the presence of S. aureus and methicillin-resistant S. aureus (MRSA) with a low detection limit of 3 cfu mL-1. Besides excellent specificity, this sensing approach exhibits satisfactory performance for the detection of target bacteria in the complex media of food.


Assuntos
Toxinas Bacterianas , Técnicas Biossensoriais , Técnicas Eletroquímicas , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/análise , Estruturas Metalorgânicas/química , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Peroxidase/metabolismo , Peroxidase/química , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/metabolismo
2.
Biosens Bioelectron ; 258: 116336, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38692222

RESUMO

As pure antipodes may differ in biological interactions, pharmacology, and toxicity, discrimination of enantiomers is important in the pharmaceutical and agrochemical industries. Two major challenges in enantiomer determination are transducing and amplifying the distinct chiral-recognition signals. In this study, a light-sensitive organic photoelectrochemical transistor (OPECT) with homochiral character is developed for enantiomer discrimination. Demonstrated with the discrimination of glucose enantiomers, the photoelectrochemically active gate electrode is prepared by integrating Au nanoparticles (AuNPs) and a chiral Cu(II)-metal-organic framework (c-CuMOF) onto TiO2 nanotube arrays (TNT). The captured glucose enantiomers are oxidized to hydrogen peroxide (H2O2) by the oxidase-mimicking AuNPs-loaded c-CuMOF. Based on the confinement effect of the mesopocket structure of the c-CuMOF and the remarkable charge transfer ability of the 1D nanotubular architecture, variations in H2O2 yield are translated into significant changes in OPECT drain currents (ID) by inducing a catalytic precipitation reaction. Variations in ID confer a sensitive discrimination of glucose enantiomers with a limit of detection (LOD) of 0.07 µM for L-Glu and 0.05 µM for D-Glu. This enantiomer-driven gate electrode response strategy not only provides a new route for enantiomer identification, but also helps to understand the origin of the high stereoselectivity in living systems.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Glucose , Ouro , Peróxido de Hidrogênio , Limite de Detecção , Nanopartículas Metálicas , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/instrumentação , Ouro/química , Técnicas Eletroquímicas/instrumentação , Estereoisomerismo , Nanopartículas Metálicas/química , Glucose/análise , Glucose/química , Glucose/isolamento & purificação , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Titânio/química , Transistores Eletrônicos , Cobre/química , Luz , Monossacarídeos/análise , Monossacarídeos/química , Nanotubos/química
3.
ACS Sens ; 9(2): 1014-1022, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38334494

RESUMO

In all their applications, gas sensors should satisfy several requirements, including low cost, reduced energy consumption, fast response/recovery, high sensitivity, and reliability in a broad humidity range. Unfortunately, the fast response/recovery and sensing reliability under high humidity conditions are often still missing, especially those working at room temperature. In this study, a humidity-resistant gas sensor with an ultrafast response/recovery rate was designed by integrating a defect-rich semiconducting sensing interface and a self-assembled monolayer (SAM) with controllable wettability. As a proof-of-concept application, ammonia (NH3), one of the atmospheric and indoor pollutants, was selected as the target gas. The decoration of interconnected defective CeO2 nanowires on spaced TiO2 nanotube arrays (NTAs) provided superior NH3 sensing performances. Moreover, we showed that manipulating the functional end group of SAMs is an efficient and simple method to adjust the wettability, by which 86% sensitivity retention with an ultrafast response (within 5 s) and a low limit of detection (45 ppb) were achieved even at 75% relative humidity and room temperature. This work provides a new route toward the comprehensive design and application of metal oxide semiconductors for trace gas monitoring under harsh conditions, such as those of agricultural, environmental, and industrial fields.


Assuntos
Amônia , Nanotubos , Umidade , Reprodutibilidade dos Testes , Molhabilidade
4.
ACS Sens ; 9(5): 2520-2528, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38723023

RESUMO

Alternative energy sources are required due to the decline in fossil fuel resources. Therefore, devices that utilize hydrovoltaic technology and light energy have drawn widespread attention because they are emission-free and solar energy is inexhaustible. However, previous investigations mainly focused on accelerating the water evaporation rate at the electrode interface. Here, a cooperative photoelectrochemical effect on a hydrovoltaic chip is achieved using NH2-MIL-125-modified TiO2 nanotube arrays (NTs). This device demonstrated significantly improved evaporation-triggered electricity generation. Under LED illumination, the open-circuit voltage (VOC) of the NH2-MIL-125/TiO2NTs active layer of the hydrovoltaic chip was enhanced by 90.3% (up to 400.2 mV). Furthermore, the prepared hydrovoltaic chip showed good high-salinity tolerance, maintaining 74.6% of its performance even in 5 M NaCl. By introducing a Schiff-based reaction between the active layer and formaldehyde, a fully integrated flexible sensor was successfully fabricated for formaldehyde monitoring, and a low limit of detection of 5.2 × 10-9 M was achieved. This novel strategy for improving the performance of hydrovoltaic devices offers a completely new general approach to construct self-powered devices for point-of-care sensing.


Assuntos
Técnicas Eletroquímicas , Formaldeído , Titânio , Formaldeído/análise , Formaldeído/química , Titânio/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Nanotubos/química , Salinidade , Processos Fotoquímicos , Eletrodos , Limite de Detecção
5.
Bioelectrochemistry ; 160: 108781, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39047393

RESUMO

Herein, a dual-defective graphite carbon nitride (DDCN) was prepared by polymerization under N2 atmosphere combined with oxidation treatment. The luminous intensity of dual-defect graphite phase carbon nitride based on defect state luminescence is significantly improved compared to CN-air. On this basis, a biosensor for CEA detection was constructed based on specific immunobinding of antigen-antibody. It is noted that the biosensor exhibits a wide linear range of 1 × 10-5 âˆ¼ 1 × 102 ng•mL-1, a low detection limit of 3.3 × 10-4 pg•mL-1, a recovery of 94 %∼105 % and RSD less than 4.41 %. In addition, there was no significant difference to the clinical results, indicating that this work has good clinical application prospects.

6.
ACS Sens ; 9(8): 4166-4175, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39037034

RESUMO

Among the various hazardous substances, formaldehyde (HCHO), produced worldwide from wood furniture, dyeing auxiliaries, or as a preservative in consumer products, is harmful to human health. In this study, a sensitive room-temperature HCHO sensor, MTiNCs/Pd, has been developed by integrating Pd nanoclusters (PdNCs) into mesoporous MIL-125(Ti)-decorated TiO2 nanochannel arrays (TiNCs). Thanks to the enrichment effect of the mesoporous structure of MIL-125 and the large surface area offered by TiNCs, the resulting gas sensor accesses significantly enhanced HCHO adsorption capacity. The sufficient energetic active defects formed on PdNCs further allow an electron-extracting effect, thus effectively separating the photogenerated electrons and holes at the interface. The resulting HCHO sensor exhibits a short response/recovery time (37 s/12 s) and excellent sensitivity with a low limit of detection (4.51 ppb) under ultraviolet (UV) irradiation. More importantly, the cyclic redox reactions of Pdδ+ in PdNCs facilitated the regeneration of O2-(ads), thus ensuring a stable and excellent gas sensing performance even under a high-humidity environment. As a proof-of-principle of this design, a wearable gas sensing band is developed for the real-time and on-site detection of HCHO in cigarette smoke, with the potential as an independent device for environmental monitoring and other smart sensing systems.


Assuntos
Formaldeído , Umidade , Paládio , Temperatura , Titânio , Titânio/química , Formaldeído/análise , Formaldeído/química , Paládio/química , Nanopartículas Metálicas/química , Limite de Detecção
7.
Anal Chim Acta ; 1290: 342180, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246738

RESUMO

Adenosine triphosphate (ATP) universally exists in all living organisms and holds a paramount role as a fundamental energy molecule in daily life. The abnormal concentration of ATP is closely related to many diseases, making the highly efficient detection of ATP very urgent. In this study, a dual-mode sensing system was developed to detect ATP sensitively and selectively via both DPV and fluorescence (FL) techniques, based on the strong interaction of ATP and Zn (II) nodes of zeolitic imidazolate framework-90 (ZIF-90). The disassembly of ZIF-90 further induced the subsequent release of pre-loaded rhodamine B (RhB). Benefitting from the robust host-guest recognition of ß-cyclodextrin (ß-CD) towards RhB, an enzyme-free and highly specific DPV detection strategy was established with the linear detecting range of 10.0-1.0 × 108 pM and the limit of detection (LOD) as low as 0.13 pM. Meanwhile, the FL sensing mode based on RhB exhibits comparable sensing performance with the linearity range of 10.0-1.0 × 107 pM and the LOD of 0.29 pM. Furthermore, the enzyme-free ATP sensing system exhibit outstanding long-term storage stability. The two-mode sensing platform was successfully applied to detect the ATP in human serum samples with the yielded result highly agree with the results of commercial ELISA kits. This dual-mode sensing platform is inspiring and paves the road for developing high-performance biosensor, demonstrating enormous potential for vitro diagnosis and practice clinic.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Zeolitas , Humanos , Trifosfato de Adenosina , Ensaio de Imunoadsorção Enzimática , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa