Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 481
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2315348121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38701117

RESUMO

Ovarian cancer is an aggressive gynecological tumor characterized by a high relapse rate and chemoresistance. Ovarian cancer exhibits the cancer hallmark of elevated glycolysis, yet effective strategies targeting cancer cell metabolic reprogramming to overcome therapeutic resistance in ovarian cancer remain elusive. Here, we revealed that epigenetic silencing of Otubain 2 (OTUB2) is a driving force for mitochondrial metabolic reprogramming in ovarian cancer, which promotes tumorigenesis and chemoresistance. Mechanistically, OTUB2 silencing destabilizes sorting nexin 29 pseudogene 2 (SNX29P2), which subsequently prevents hypoxia-inducible factor-1 alpha (HIF-1α) from von Hippel-Lindau tumor suppressor-mediated degradation. Elevated HIF-1α activates the transcription of carbonic anhydrase 9 (CA9) and drives ovarian cancer progression and chemoresistance by promoting glycolysis. Importantly, pharmacological inhibition of CA9 substantially suppressed tumor growth and synergized with carboplatin in the treatment of OTUB2-silenced ovarian cancer. Thus, our study highlights the pivotal role of OTUB2/SNX29P2 in suppressing ovarian cancer development and proposes that targeting CA9-mediated glycolysis is an encouraging strategy for the treatment of ovarian cancer.


Assuntos
Anidrase Carbônica IX , Inativação Gênica , Mitocôndrias , Neoplasias Ovarianas , Tioléster Hidrolases , Animais , Feminino , Humanos , Camundongos , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica IX/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Reprogramação Metabólica , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Tioléster Hidrolases/genética
2.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38171932

RESUMO

N6-methyladenosine (m6A) RNA methylation is the predominant epigenetic modification for mRNAs that regulates various cancer-related pathways. However, the prognostic significance of m6A modification regulators remains unclear in glioma. By integrating the TCGA lower-grade glioma (LGG) and glioblastoma multiforme (GBM) gene expression data, we demonstrated that both the m6A regulators and m6A-target genes were associated with glioma prognosis and activated various cancer-related pathways. Then, we paired m6A regulators and their target genes as m6A-related gene pairs (MGPs) using the iPAGE algorithm, among which 122 MGPs were significantly reversed in expression between LGG and GBM. Subsequently, we employed LASSO Cox regression analysis to construct an MGP signature (MrGPS) to evaluate glioma prognosis. MrGPS was independently validated in CGGA and GEO glioma cohorts with high accuracy in predicting overall survival. The average area under the receiver operating characteristic curve (AUC) at 1-, 3- and 5-year intervals were 0.752, 0.853 and 0.831, respectively. Combining clinical factors of age and radiotherapy, the AUC of MrGPS was much improved to around 0.90. Furthermore, CIBERSORT and TIDE algorithms revealed that MrGPS is indicative for the immune infiltration level and the response to immune checkpoint inhibitor therapy in glioma patients. In conclusion, our study demonstrated that m6A methylation is a prognostic factor for glioma and the developed prognostic model MrGPS holds potential as a valuable tool for enhancing patient management and facilitating accurate prognosis assessment in cases of glioma.


Assuntos
Glioblastoma , Glioma , Humanos , Glioma/genética , Adenina , Adenosina/genética
3.
J Cell Mol Med ; 28(8): e18230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568083

RESUMO

Liver hepatocellular carcinoma (LIHC) is a highly lethal form of cancer that is among the deadliest cancer types globally. In terms of cancer-related mortality rates, liver cancer ranks among the top three, underscoring the severity of this disease. Insufficient analysis has been conducted to fully understand the potential value of the extracellular matrix (ECM) in immune infiltration and the prognostic stratification of LIHC, despite its recognised importance in the development of this disease. The scRNA-seq data of GSE149614 was used to conduct single-cell analysis on 10 LIHC samples. CellChat scores were calculated for seven cell populations in the descending cohort to investigate cellular communication, while PROGENy scores were calculated to determine tumour-associated pathway scores in different cell populations. The pathway analysis using GO and KEGG revealed the enrichment of ECM-associated genes in the pathway, highlighting the potential role of the ECM in LIHC development. By utilizing the TCGA-LIHC cohort, an ECM-based prognostic model for LIHC was developed using Lasso regression. Immune infiltration scores were calculated using two methods, and the performance of the ECM-related risk score was evaluated using an independent cohort from the CheckMate study. To determine the precise expression of ECM-associated risk genes in LIHC, we evaluated hepatocellular carcinoma cell lines using a range of assays, including Western blotting, invasion assays and Transwell assays. Using single-cell transcriptome analysis, we annotated the spatially-specific distribution of major immune cell types in single-cell samples of LIHC. The main cell types identified and annotated included hepatocytes, T cells, myeloid cells, epithelial cells, fibroblasts, endothelial cells and B cells. The utilisation of cellchat and PROGENy analyses enabled the investigation and unveiling of signalling interactions, protein functionalities and the prominent influential pathways facilitated by the primary immune cell types within the LIHC. Numerous tumour pathways, including PI2K, EGFR and TGFb, demonstrated a close correlation with the involvement of ECM in LIHC. Moreover, an evaluation was conducted to assess the primary ECM-related functional changes and biological pathway enrichment in LIHC. Differential genes associated with ECM were identified and utilised to create prognostic models. The prognostic stratification value of these models for LIHC patients was confirmed through validation in multiple databases. Furthermore, through immune infiltration analysis, it was discovered that ECM might be linked to the irregular expression and regulation of numerous immune cells. Additionally, histone acetylation was mapped against gene mutation frequencies and differential expression profiles. The prognostic stratification efficacy of the ECM prediction model constructed in the context of PD-1 inhibitor therapy was also examined, and it exhibited strong stratification performance. Cellular experiments, including Western blotting, invasion and Transwell assays, revealed that ECM-associated risk genes have a promoting effect on the development of LIHC. The creation of biomarkers for LIHC using ECM-related genes unveiled substantial correlations with immune microenvironmental infiltration and functional mutations in various tumour pathways. This enlightens us to the possibility that the influence of ECM on tumours may extend beyond simply promoting the fibrotic process and the stromal composition of tumours.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Prognóstico , Células Endoteliais , Multiômica , Neoplasias Hepáticas/genética , Matriz Extracelular/genética
4.
Hum Brain Mapp ; 45(8): e26712, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38798104

RESUMO

The aim of this study was to systematically investigate structural and functional alterations in amygdala subregions using multimodal magnetic resonance imaging (MRI) in patients with tinnitus with or without affective dysfunction. Sixty patients with persistent tinnitus and 40 healthy controls (HCs) were recruited. Based on a questionnaire assessment, 26 and 34 patients were categorized into the tinnitus patients with affective dysfunction (TPAD) and tinnitus patients without affective dysfunction (TPWAD) groups, respectively. MRI-based measurements of gray matter volume, fractional anisotropy (FA), fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), degree centrality (DC), and functional connectivity (FC) were conducted within 14 amygdala subregions for intergroup comparisons. Associations between the MRI properties and clinical characteristics were estimated via partial correlation analyses. Compared with that of the HCs, the TPAD and TPWAD groups exhibited significant structural and functional changes, including white matter integrity (WMI), fALFF, ReHo, DC, and FC alterations, with more pronounced WMI changes in the TPAD group, predominantly within the left auxiliary basal or basomedial nucleus (AB/BM), right central nucleus, right lateral nuclei (dorsal portion), and left lateral nuclei (ventral portion containing basolateral portions). Moreover, the TPAD group exhibited decreased FC between the left AB/BM and left middle occipital gyrus and right superior frontal gyrus (SFG), left basal nucleus and right SFG, and right lateral nuclei (intermediate portion) and right SFG. In combination, these amygdalar alterations exhibited a sensitivity of 65.4% and specificity of 96.9% in predicting affective dysfunction in patients with tinnitus. Although similar structural and functional amygdala remodeling were observed in the TPAD and TPWAD groups, the changes were more pronounced in the TPAD group. These changes mainly involved alterations in functionality and white matter microstructure in various amygdala subregions; in combination, these changes could serve as an imaging-based predictor of emotional disorders in patients with tinnitus.


Assuntos
Tonsila do Cerebelo , Imageamento por Ressonância Magnética , Zumbido , Humanos , Zumbido/diagnóstico por imagem , Zumbido/fisiopatologia , Zumbido/patologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/fisiopatologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia , Transtornos do Humor/diagnóstico por imagem , Transtornos do Humor/etiologia , Transtornos do Humor/fisiopatologia , Transtornos do Humor/patologia
5.
BMC Med ; 22(1): 256, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902722

RESUMO

BACKGROUND: The relationship between variation in serum uric acid (SUA) levels and brain health is largely unknown. This study aimed to examine the associations of long-term variability in SUA levels with neuroimaging metrics and cognitive function. METHODS: This study recruited 1111 participants aged 25-83 years from a multicenter, community-based cohort study. The SUA concentrations were measured every two years from 2006 to 2018. We measured the intraindividual SUA variability, including the direction and magnitude of change by calculating the slope value. The associations of SUA variability with neuroimaging markers (brain macrostructural volume, microstructural integrity, white matter hyperintensity, and the presence of cerebral small vessel disease) and cognitive function were examined using generalized linear models. Mediation analyses were performed to assess whether neuroimaging markers mediate the relationship between SUA variation and cognitive function. RESULTS: Compared with the stable group, subjects with increased or decreased SUA levels were all featured by smaller brain white matter volume (beta = - 0.25, 95% confidence interval [CI] - 0.39 to - 0.11 and beta = - 0.15, 95% CI - 0.29 to - 0.02). Participants with progressively increased SUA exhibited widespread disrupted microstructural integrity, featured by lower global fractional anisotropy (beta = - 0.24, 95% CI - 0.38 to - 0.10), higher mean diffusivity (beta = 0.16, 95% CI 0.04 to 0.28) and radial diffusivity (beta = 0.19, 95% CI 0.06 to 0.31). Elevated SUA was also associated with cognitive decline (beta = - 0.18, 95% CI - 0.32 to - 0.04). White matter atrophy and impaired brain microstructural integrity mediated the impact of SUA increase on cognitive decline. CONCLUSIONS: It is the magnitude of SUA variation rather than the direction that plays a critical negative role in brain health, especially for participants with hyperuricemia. Smaller brain white matter volume and impaired microstructural integrity mediate the relationship between increased SUA level and cognitive function decline. Long-term stability of SUA level is recommended for maintaining brain health and preventing cognitive decline.


Assuntos
Disfunção Cognitiva , Neuroimagem , Ácido Úrico , Humanos , Idoso , Masculino , Disfunção Cognitiva/sangue , Feminino , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Ácido Úrico/sangue , Neuroimagem/métodos , Estudos de Coortes , Adulto , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
6.
Small ; 20(28): e2309263, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38321840

RESUMO

The development of high-precision insoluble conducting polymer patterns for soft electronics is extremely challenging, mainly because of the incompatibility of the synthesis process with the underlying layers. In this study, a novel transfer-printing method is designed that enables the fabrication of photolithographic insoluble conducting polypyrrole (PPy) electrode patterns on soft substrates with high precision, demonstrating compatibility with various soft organic functional layers. Excellent mechanical stability, good biocompatibility, ultra-smooth surface, and outstanding conformability are observed. The photolithographic PPy electrode patterns, combined with an elastic organic semiconductor and dielectric, produce conformal all-organic transistors with mobility of 1.8 cm2 V-1 s-1. This study paves the way to use insoluble conducting polymers to develop complex, high-density flexible patterns and offers a promising organic electrode for the new-generation soft all-organic electronics.

7.
J Pharmacol Exp Ther ; 390(1): 88-98, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38719477

RESUMO

Constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor α (PPARα) are members of the nuclear receptor superfamily, which regulates various physiologic and pathologic processes. Phase separation is a dynamic biophysical process in which biomacromolecules form liquid-like condensates, which have been identified as contributors to many cellular functions, such as signal transduction and transcription regulation. However, the possibility of phase separation for CAR and PPARα remains unknown. This study explored the potential phase separation of CAR and PPARα The computational analysis utilizing algorithm tools examining the intrinsically disordered regions of CAR and PPARα suggested a limited likelihood of undergoing phase separation. Experimental assays under varying conditions of hyperosmotic stress and agonist treatments confirmed the absence of phase separation for these receptors. Additionally, the optoDroplets assay, which utilizes blue light stimulation to induce condensate formation, showed that there was no condensate formation of the fusion protein of Cry2 with CAR or PPARα Furthermore, phase separation of CAR or PPARα did not occur despite reduced target expression under hyperosmotic stress. In conclusion, these findings revealed that neither the activation of CAR and PPARα nor hyperosmotic stress induces phase separation of CAR and PPARα in cells. SIGNIFICANCE STATEMENT: Constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor α (PPARα) are key regulators of various functions in the body. This study showed that CAR and PPARα do not exhibit phase separation under hyperosmotic stress or after agonist-induced activation. These findings provide new insights into the CAR and PPARα biology and physiology.


Assuntos
Receptor Constitutivo de Androstano , PPAR alfa , PPAR alfa/metabolismo , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Pressão Osmótica , Separação de Fases
8.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637205

RESUMO

MOTIVATION: Many studies have shown that IDH mutation and 1p/19q co-deletion can serve as prognostic signatures of glioma. Although these genetic variations affect the expression of one or more genes, the prognostic value of gene expression related to IDH and 1p/19q status is still unclear. RESULTS: We constructed an ensemble gene pair signature for the risk evaluation and survival prediction of glioma based on the prior knowledge of the IDH and 1p/19q status. First, we separately built two gene pair signatures IDH-GPS and 1p/19q-GPS and elucidated that they were useful transcriptome markers projecting from corresponding genome variations. Then, the gene pairs in these two models were assembled to develop an integrated model named Glioma Prognostic Gene Pair Signature (GPGPS), which demonstrated high area under the curves (AUCs) to predict 1-, 3- and 5-year overall survival (0.92, 0.88 and 0.80) of glioma. GPGPS was superior to the single GPSs and other existing prognostic signatures (avg AUC = 0.70, concordance index = 0.74). In conclusion, the ensemble prognostic signature with 10 gene pairs could serve as an independent predictor for risk stratification and survival prediction in glioma. This study shed light on transferring knowledge from genetic alterations to expression changes to facilitate prognostic studies. AVAILABILITY AND IMPLEMENTATION: Codes are available at https://github.com/Kimxbzheng/GPGPS.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Prognóstico , Glioma/genética , Aberrações Cromossômicas , Mutação , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 1/metabolismo
9.
Drug Metab Dispos ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296653

RESUMO

Pregnane X receptor (PXR) belongs to the nuclear receptor superfamily that plays a crucial role in hepatic physiological and pathological conditions. Phase separation is a process in which biomacromolecules aggregate and condense into a dense phase as liquid condensates and coexist with a dilute phase, contributing to various cellular and biological functions. Till now, whether PXR could undergo phase separation remains unclear. This study aimed to investigate whether PXR undergoes phase separation. Analysis of the intrinsically disordered regions (IDRs) using algorithms tools indicated a low propensity of PXR to undergo phase separation. Experimental assays such as hyperosmotic stress, agonist treatment, and optoDroplets assay demonstrated the absence of phase separation for PXR. OptoDroplets assay revealed the inability of the fusion protein of Cry2 with PXR to form condensates upon blue light stimulation. Moreover, phase separation of PXR did not occur even though the mRNA and protein expression levels of PXR target, CYP3A4, changed after sorbitol treatment. In conclusion, for the first time, these findings suggested that exogenous PXR does not undergo phase separation following activation or under hyperosmotic stress in nucleus of cells. Significance Statement PXR plays a critical role in hepatic physiological and pathological processes. The present study clearly demonstrated that exogenous PXR does not undergo phase separation after activation by agonist or under hyperosmotic stress in nucleus. These findings may help understand PXR biology.

10.
Opt Lett ; 49(4): 907-910, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359213

RESUMO

A mirrored transformation optics (MTO) approach is presented to overcome the material mismatch in transformation optics. It makes good use of the reflection behavior and introduces a mirrored medium to offset the phase discontinuities. Using this approach, a high-performance planar focusing lens of transmission type is designed, which has a larger concentration ratio than the other focusing lens obtained by the generalized Snell's law. The MTO will not change any functionality of the original lens and has promising potential applications in imaging and light energy harvesting.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa