Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886926

RESUMO

Duchenne muscular dystrophy (DMD) is a congenital myopathy caused by mutations in the dystrophin gene. DMD pathology is marked by myositis, muscle fiber degeneration, and eventual muscle replacement by fibrosis and adipose tissue. Satellite cells (SC) are muscle stem cells critical for muscle regeneration. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that promotes SC proliferation, regulates lymphocyte trafficking, and is irreversibly degraded by sphingosine phosphate lyase (SPL). Here, we show that SPL is virtually absent in normal human and murine skeletal muscle but highly expressed in inflammatory infiltrates and degenerating fibers of dystrophic DMD muscle. In mdx mice that model DMD, high SPL expression is correlated with dysregulated S1P metabolism. Perinatal delivery of the SPL inhibitor LX2931 to mdx mice augmented muscle S1P and SC numbers, reduced leukocytes in peripheral blood and skeletal muscle, and attenuated muscle inflammation and degeneration. The effect on SC was also observed in SCID/mdx mice that lack mature T and B lymphocytes. Transcriptional profiling in the skeletal muscles of LX2931-treated vs. control mdx mice demonstrated changes in innate and adaptive immune functions, plasma membrane interactions with the extracellular matrix (ECM), and axon guidance, a known function of SC. Our cumulative findings suggest that by raising muscle S1P and simultaneously disrupting the chemotactic gradient required for lymphocyte egress, SPL inhibition exerts a combination of muscle-intrinsic and systemic effects that are beneficial in the context of muscular dystrophy.


Assuntos
Aldeído Liases , Distrofia Muscular de Duchenne , Aldeído Liases/genética , Aldeído Liases/metabolismo , Animais , Modelos Animais de Doenças , Distrofina/genética , Humanos , Inflamação/patologia , Camundongos , Camundongos Endogâmicos mdx , Camundongos SCID , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Esfingosina/metabolismo
2.
J Inherit Metab Dis ; 43(5): 1131-1142, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32233035

RESUMO

Sphingosine-1-phosphate (S1P) lyase is a vitamin B6-dependent enzyme that degrades sphingosine-1-phosphate in the final step of sphingolipid metabolism. In 2017, a new inherited disorder was described caused by mutations in SGPL1, which encodes sphingosine phosphate lyase (SPL). This condition is referred to as SPL insufficiency syndrome (SPLIS) or alternatively as nephrotic syndrome type 14 (NPHS14). Patients with SPLIS exhibit lymphopenia, nephrosis, adrenal insufficiency, and/or neurological defects. No targeted therapy for SPLIS has been reported. Vitamin B6 supplementation has therapeutic activity in some genetic diseases involving B6-dependent enzymes, a finding ascribed largely to the vitamin's chaperone function. We investigated whether B6 supplementation might have activity in SPLIS patients. We retrospectively monitored responses of disease biomarkers in patients supplemented with B6 and measured SPL activity and sphingolipids in B6-treated patient-derived fibroblasts. In two patients, disease biomarkers responded to B6 supplementation. S1P abundance and activity levels increased and sphingolipids decreased in response to B6. One responsive patient is homozygous for an SPL R222Q variant present in almost 30% of SPLIS patients. Molecular modeling suggests the variant distorts the dimer interface which could be overcome by cofactor supplementation. We demonstrate the first potential targeted therapy for SPLIS and suggest that 30% of SPLIS patients might respond to cofactor supplementation.


Assuntos
Insuficiência Adrenal/tratamento farmacológico , Aldeído Liases/metabolismo , Suplementos Nutricionais , Linfopenia/tratamento farmacológico , Nefrose/tratamento farmacológico , Vitamina B 6/administração & dosagem , Insuficiência Adrenal/genética , Aldeído Liases/química , Aldeído Liases/genética , Biomarcadores/metabolismo , Fibroblastos/efeitos dos fármacos , Humanos , Linfopenia/genética , Mutação , Nefrose/genética , Fosfatos , Síndrome
3.
Invest New Drugs ; 37(6): 1309, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31032525

RESUMO

The authors would like to note an omission of disclosure in this paper. Author JDS is cofounder, equity-holder, and consultant of GILTRx Therapeutics.

4.
Invest New Drugs ; 36(5): 743-754, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29335887

RESUMO

Neuroblastoma is a childhood malignancy that accounts for approximately 15% of childhood cancer deaths. Only 20-35% of children with metastatic neuroblastoma survive with standard therapy. Identification of more effective therapies is essential to improving the outcome of children with high-stage disease. Sphingadienes (SD) are growth-inhibitory sphingolipids found in natural sources including soy. They exhibit chemopreventive activity in mouse models of colon cancer, where they mediate cytotoxicity by inhibiting key pro-carcinogenic signaling pathways. In this study, the effect of SD on neuroblastoma was analyzed. Low micromolar concentrations of SD were cytotoxic to transformed and primary neuroblastoma cells independently of N-Myc amplification status. SD induced both caspase-dependent apoptosis and autophagy in neuroblastoma cells. However, only inhibition of caspase-dependent apoptosis protected neuroblastoma cells from SD-mediated cytotoxicity. SD also inhibited AKT activation in neuroblastoma cells as shown by reduced phosphorylated AKT levels. Pre-treatment with insulin attenuated SD-mediated cytotoxicity in vitro. SD-loaded nanoparticles (NP) administered parenterally to immunodeficient mice carrying neuroblastoma xenografts resulted in cytotoxic levels of SD in the circulation and significantly reduced tumor growth compared to vehicle-treated controls. Analysis of tumor extracts demonstrated reduced AKT activation in tumors of mice treated with SD-NP compared to controls treated with empty NP. Our findings indicate SD are novel potential chemotherapeutic agents that promote neuroblastoma cell death and reduce tumorigenicity in vivo.


Assuntos
Antineoplásicos/administração & dosagem , Nanopartículas/administração & dosagem , Neuroblastoma/tratamento farmacológico , Esfingolipídeos/administração & dosagem , Animais , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Camundongos SCID , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esfingolipídeos/sangue , Esfingolipídeos/farmacocinética , Carga Tumoral/efeitos dos fármacos
5.
Plant Physiol ; 162(3): 1669-80, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23715527

RESUMO

Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in development, but their functional mechanisms remain largely unknown. Here, we characterized the cellular functions of the class I TCP transcription factor GhTCP14 from upland cotton (Gossypium hirsutum). GhTCP14 is expressed predominantly in fiber cells, especially at the initiation and elongation stages of development, and its expression increased in response to exogenous auxin. Induced heterologous overexpression of GhTCP14 in Arabidopsis (Arabidopsis thaliana) enhanced initiation and elongation of trichomes and root hairs. In addition, root gravitropism was severely affected, similar to mutant of the auxin efflux carrier PIN-FORMED2 (PIN2) gene. Examination of auxin distribution in GhTCP14-expressing Arabidopsis by observation of auxin-responsive reporters revealed substantial alterations in auxin distribution in sepal trichomes and root cortical regions. Consistent with these changes, expression of the auxin uptake carrier AUXIN1 (AUX1) was up-regulated and PIN2 expression was down-regulated in the GhTCP14-expressing plants. The association of GhTCP14 with auxin responses was also evidenced by the enhanced expression of auxin response gene IAA3, a gene in the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) family. Electrophoretic mobility shift assays showed that GhTCP14 bound the promoters of PIN2, IAA3, and AUX1, and transactivation assays indicated that GhTCP14 had transcription activation activity. Taken together, these results demonstrate that GhTCP14 is a dual-function transcription factor able to positively or negatively regulate expression of auxin response and transporter genes, thus potentially acting as a crucial regulator in auxin-mediated differentiation and elongation of cotton fiber cells.


Assuntos
Gossypium/citologia , Gossypium/genética , Ácidos Indolacéticos/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Núcleo Celular/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Gravitropismo/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Tricomas/genética , Tricomas/metabolismo
6.
Oncogene ; 43(16): 1203-1213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413795

RESUMO

Neuroblastoma is the most common extracranial malignant tumor of childhood, accounting for 15% of all pediatric cancer deaths. Despite significant advances in our understanding of neuroblastoma biology, five-year survival rates for high-risk disease remain less than 50%, highlighting the importance of identifying novel therapeutic targets to combat the disease. MYCN amplification is the most frequent and predictive molecular aberration correlating with poor outcome in neuroblastoma. N-Myc is a short-lived protein primarily due to its rapid proteasomal degradation, a potentially exploitable vulnerability in neuroblastoma. AF1q is an oncoprotein with established roles in leukemia and solid tumor progression. It is normally expressed in brain and sympathetic neurons and has been postulated to play a part in neural differentiation. However, no role for AF1q in tumors of neural origin has been reported. In this study, we found AF1q to be a universal marker of neuroblastoma tumors. Silencing AF1q in neuroblastoma cells caused proteasomal degradation of N-Myc through Ras/ERK and AKT/GSK3ß pathways, activated p53 and blocked cell cycle progression, culminating in cell death via the intrinsic apoptotic pathway. Moreover, silencing AF1q attenuated neuroblastoma tumorigenicity in vivo signifying AF1q's importance in neuroblastoma oncogenesis. Our findings reveal AF1q to be a novel regulator of N-Myc and potential therapeutic target in neuroblastoma.


Assuntos
Neuroblastoma , Criança , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/patologia , Proteínas Oncogênicas/metabolismo , Transformação Celular Neoplásica , Fatores de Transcrição/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
7.
Proteomics ; 11(22): 4296-309, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21928292

RESUMO

Verticillium wilt of cotton is a vascular disease mainly caused by the soil-born filamentous fungus Verticillium dahliae. To study the mechanisms associated with defense responses in wilt-resistant sea-island cotton (Gossypium barbadense) upon V. dahliae infection, a comparative proteomic analysis between infected and mock-inoculated roots of G. barbadense var. Hai 7124 (a cultivar showing resistance against V. dahliae) was performed by 2-DE combined with local EST database-assisted PMF and MS/MS analysis. A total of 51 upregulated and 17 downregulated proteins were identified, and these proteins are mainly involved in defense and stress responses, primary and secondary metabolisms, lipid transport, and cytoskeleton organization. Three novel clues regarding wilt resistance of G. barbadense are gained from this study. First, ethylene signaling was significantly activated in the cotton roots attacked by V. dahliae as shown by the elevated expression of ethylene biosynthesis and signaling components. Second, the Bet v 1 family proteins may play an important role in the defense reaction against Verticillium wilt. Third, wilt resistance may implicate the redirection of carbohydrate flux from glycolysis to pentose phosphate pathway (PPP). To our knowledge, this study is the first root proteomic analysis on cotton wilt resistance and provides important insights for establishing strategies to control this disease.


Assuntos
Gossypium/metabolismo , Gossypium/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Verticillium/metabolismo , Western Blotting , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Raízes de Plantas/metabolismo , Proteoma/química , Proteoma/metabolismo , Proteômica , Estresse Fisiológico/fisiologia
8.
J Biomed Biotechnol ; 2011: 235216, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21941430

RESUMO

Dysferlin plays an important role in repairing membrane damage elicited by laser irradiation, and dysferlin deficiency causes muscular dystrophy and associated cardiomyopathy. Proteins such as perforin, complement component C9, and bacteria-derived cytolysins, as well as the natural detergent saponin, can form large pores on the cell membrane via complexation with cholesterol. However, it is not clear whether dysferlin plays a role in repairing membrane damage induced by pore-forming reagents. In this study, we observed that dysferlin-deficient muscles recovered the tetanic force production to the same extent as their WT counterparts following a 5-min saponin exposure (50 µg/mL). Interestingly, the slow soleus muscles recovered significantly better than the fast extensor digitorum longus (EDL) muscles. Our data suggest that dysferlin is unlikely involved in repairing saponin-induced membrane damage and that the slow muscle is more efficient than the fast muscle in repairing such damage.


Assuntos
Proteínas de Membrana/deficiência , Músculo Esquelético/efeitos dos fármacos , Saponinas/farmacologia , Análise de Variância , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Membrana Celular/metabolismo , Disferlina , Feminino , Imuno-Histoquímica , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/metabolismo
9.
JCI Insight ; 6(8)2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33755599

RESUMO

Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is a rare metabolic disorder caused by inactivating mutations in sphingosine-1-phosphate lyase 1 (SGPL1), which is required for the final step of sphingolipid metabolism. SPLIS features include steroid-resistant nephrotic syndrome and impairment of neurological, endocrine, and hematopoietic systems. Many affected individuals die within the first 2 years. No targeted therapy for SPLIS is available. We hypothesized that SGPL1 gene replacement would address the root cause of SPLIS, thereby serving as a universal treatment for the condition. As proof of concept, we evaluated the efficacy of adeno-associated virus 9-mediated transfer of human SGPL1 (AAV-SPL) given to newborn Sgpl1-KO mice that model SPLIS and die in the first weeks of life. Treatment dramatically prolonged survival and prevented nephrosis, neurodevelopmental delay, anemia, and hypercholesterolemia. STAT3 pathway activation and elevated proinflammatory and profibrogenic cytokines observed in KO kidneys were attenuated by treatment. Plasma and tissue sphingolipids were reduced in treated compared with untreated KO pups. SGPL1 expression and activity were measurable for at least 40 weeks. In summary, early AAV-SPL treatment prevents nephrosis, lipidosis, and neurological impairment in a mouse model of SPLIS. Our results suggest that SGPL1 gene replacement holds promise as a durable and universal targeted treatment for SPLIS.


Assuntos
Aldeído Liases/genética , Técnicas de Transferência de Genes , Erros Inatos do Metabolismo/genética , Síndrome Nefrótica/genética , Transtornos do Neurodesenvolvimento/genética , Anemia/genética , Anemia/metabolismo , Anemia/fisiopatologia , Animais , Citocinas/metabolismo , Dependovirus , Terapia Genética , Humanos , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Hipercolesterolemia/fisiopatologia , Inflamação/metabolismo , Rim/metabolismo , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/fisiopatologia , Erros Inatos do Metabolismo/terapia , Camundongos , Camundongos Knockout , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/fisiopatologia , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/fisiopatologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Taxa de Sobrevida
10.
J Proteome Res ; 9(2): 1076-87, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19954254

RESUMO

Cotton fiber is an ideal model for studying plant cell elongation. To date, the underlying mechanisms controlling fiber elongation remain unclear due to their high complexity. In this study, a comparative proteomic analysis between a short-lint fiber mutant (Ligon lintless, Li(1)) and its wild-type was performed to identify fiber elongation-related proteins. By 2-DE combined with local EST database-assisted MS/MS analysis, 81 differentially expressed proteins assigned to different functional categories were identified from Li(1) fibers, of which 54 were down-regulated and 27 were up-regulated. Several novel aspects regarding cotton fiber elongation can be illustrated from our data. First, over half of the down-regulated proteins were newly identified at the protein level, which is mainly involved in protein folding and stabilization, nucleocytoplasmic transport, signal transduction, and vesicular-mediated transport. Second, a number of cytoskeleton-related proteins showed a remarkable decrease in protein abundance in the Li(1) fibers. Accordingly, the architecture of actin cytoskeleton was severely deformed and the microtubule organization was moderately altered, accompanied with dramatic disruption of vesicle trafficking. Third, the expression of several proteins involved in unfolded protein response (UPR) was activated in Li(1) fibers, indicating that the deficiency of fiber cell elongation was related to ER stress. Collectively, these findings significantly advanced our understanding of the mechanisms associated with cotton fiber elongation.


Assuntos
Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Proteômica , Sequência de Bases , Primers do DNA , Eletroforese em Gel Bidimensional , Etiquetas de Sequências Expressas , Microscopia Eletrônica de Varredura , Reação em Cadeia da Polimerase , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
11.
Plant Cell Physiol ; 51(8): 1276-90, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20558432

RESUMO

Cotton fiber development at the stages of elongation and secondary wall synthesis determines the traits of fiber length and strength. To date, the mechanisms controlling the progression of these two phases remain elusive. In this work, the function of a fiber-preferential actin-binding protein (GhPFN2) was characterized by cytological and molecular studies on the fibers of transgenic green-colored cotton (Gossypium hirsutum) through three successive generations. Overexpression of GhPFN2 caused pre-terminated cell elongation, resulting in a marked decrease in the length of mature fibers. Cytoskeleton staining and quantitative assay revealed that thicker and more abundant F-actin bundles formed during the elongation stage in GhPFN2-overexpressing fibers. Accompanying this alteration, the developmental reorientation of transverse microtubules to the oblique direction was advanced by 2 d at the period of transition from elongation to secondary wall deposition. Birefringence and reverse transcription-PCR analyses showed that earlier onset of secondary wall synthesis occurred in parallel. These data demonstrate that formation of the higher actin structure plays a determinant role in the progression of developmental phases in cotton fibers, and that GhPFN2 acts as a critical modulator in this process. Such a function of the actin cytoskeleton in cell phase conversion may be common to other secondary wall-containing plant cells.


Assuntos
Fibra de Algodão , Gossypium/genética , Proteínas de Plantas/metabolismo , Profilinas/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Parede Celular/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Microtúbulos/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Profilinas/genética , RNA de Plantas/genética
12.
Plant Biotechnol J ; 7(1): 13-23, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18761653

RESUMO

Cotton fibre is the most important natural fibres for textile industry. To date, the mechanism that governs the development of fibre traits is largely unknown. In this study, we have characterized the function of a member of the actin depolymerizing factor (ADF) family in Gossypium hirsutum by down-regulation of the gene (designated as GhADF1) expression in the transgenic cotton plants. We observed that both the fibre length and strength of the GhADF1-underexpressing plants increased as compared to the wild-type fibre, and transgenic fibres contained more abundant F-actin filaments in the cortical region of the cells. Moreover, the secondary cell wall of the transgenic fibre appeared thicker and the cellulose content was higher than that of the control fibre. Our results suggest that organization of actin cytoskeleton regulated by actin-associated proteins such as GhADF1 plays a critical role in the processes of elongation and secondary cell wall formation during fibre development. Additionally, our study provided a candidate intrinsic gene for the improvement of fibre traits via genetic engineering.


Assuntos
Fibra de Algodão , Destrina/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Proteínas de Plantas/metabolismo , Citoesqueleto de Actina/ultraestrutura , Parede Celular/ultraestrutura , Celulose/metabolismo , Clonagem Molecular , DNA de Plantas/genética , Destrina/genética , Genes de Plantas , Gossypium/metabolismo , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
13.
Plant Physiol Biochem ; 46(10): 935-40, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18573665

RESUMO

The CBL/CIPK signaling system mediates a variety of responses to environmental stimuli in plants. In this work, we identified four CBL genes from Gossypium hirsutum, two of which (designated GhCBL2 and GhCBL3) showed preferential expression in the elongating fiber cells. Moreover, the expression patterns of these two CBL genes coincided with that of a putative CBL-interacting protein kinase gene (GhCIPK1) that we isolated in a previous study. Yeast two-hybrid assay indicated that among the four CBLs, GhCIPK1 interacted selectively with GhCBL2 and GhCBL3. The co-expression and interactions of these proteins suggest that they are components of the same signaling pathway. These findings strengthen our previous prediction that CBL/CIPK signaling plays a critical role in the regulation of cotton fiber elongation.


Assuntos
Calcineurina/metabolismo , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Calcineurina/química , Primers do DNA , Gossypium/enzimologia , Dados de Sequência Molecular , Proteínas de Plantas/química , Ligação Proteica , Homologia de Sequência de Aminoácidos
15.
PLoS One ; 9(3): e92749, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24663380

RESUMO

Anoctamin 6 (Ano6) belongs to a conserved gene family (TMEM16) predicted to code for eight transmembrane proteins with putative Ca2+-activated chloride channel (CaCC) activity. Recent work revealed that disruption of ANO6 leads to a blood coagulation defect and impaired skeletal development. However, its function in skeletal muscle cells remains to be determined. By using a RNA interference mediated (RNAi) loss-of-function approach, we show that Ano6 regulates C2C12 myoblast proliferation. Ano6 is highly expressed in C2C12 myoblasts and its expression decreases upon differentiation. Knocking down Ano6 significantly reduces C2C12 myoblast proliferation but has minimal effect on differentiation. Ano6 deficiency significantly reduces ERK/AKT phosphorylation, which has been shown to be involved in regulation of cancer cell proliferation by another Anoctamin member. Taken together, our data demonstrate for the first time that Ano6 plays an essential role in C2C12 myoblast proliferation, likely via regulating the ERK/AKT signaling pathway.


Assuntos
Mioblastos/citologia , Mioblastos/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Anoctaminas , Linhagem Celular , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Proteínas de Transferência de Fosfolipídeos/deficiência , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
16.
Mol Ther Nucleic Acids ; 2: e112, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23900226

RESUMO

Myostatin (MSTN) is a negative regulator of skeletal muscle mass. Strategies to block myostatin signaling pathway have been extensively pursued to increase muscle mass in various disease settings including muscular dystrophy. Here, we report a new class of reagents based on transcription activator-like effector nucleases (TALENs) to disrupt myostatin expression at the genome level. We designed a pair of MSTN TALENs to target a highly conserved sequence in the coding region of the myostatin gene. We demonstrate that codelivery of these MSTN TALENs induce highly specific and efficient gene disruption in a variety of human, cattle, and mouse cells. Based upon sequence analysis, this pair of TALENs is expected to be functional in many other mammalian species. Moreover, we demonstrate that these MSTN TALENs can facilitate targeted integration of a mCherry expression cassette or a larger muscular dystrophy gene (dysferlin) expression cassette into the MSTN locus in mouse or human cells. Therefore, targeted editing of the myostatin gene using our highly specific and efficient TALEN pair would facilitate cell engineering, allowing potential use in translational research for cell-based therapy.Molecular Therapy-Nucleic Acids (2013) 2, e112; doi:10.1038/mtna.2013.39; published online 30 July 2013.

17.
PLoS One ; 8(7): e69671, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936073

RESUMO

Myosin binding protein-C (MyBP-C) exists in three major isoforms: slow skeletal, fast skeletal, and cardiac. While cardiac MyBP-C (cMyBP-C) expression is restricted to the heart in the adult, it is transiently expressed in neonatal stages of some skeletal muscles. However, it is unclear whether this expression is necessary for the proper development and function of skeletal muscle. Our aim was to determine whether the absence of cMyBP-C alters the structure, function, or MyBP-C isoform expression in adult skeletal muscle using a cMyBP-C null mouse model (cMyBP-C((t/t))). Slow MyBP-C was expressed in both slow and fast skeletal muscles, whereas fast MyBP-C was mostly restricted to fast skeletal muscles. Expression of these isoforms was unaffected in skeletal muscle from cMyBP-C((t/t)) mice. Slow and fast skeletal muscles in cMyBP-C((t/t)) mice showed no histological or ultrastructural changes in comparison to the wild-type control. In addition, slow muscle twitch, tetanus tension, and susceptibility to injury were all similar to the wild-type controls. Interestingly, fMyBP-C expression was significantly increased in the cMyBP-C((t/t)) hearts undergoing severe dilated cardiomyopathy, though this does not seem to prevent dysfunction. Additionally, expression of both slow and fast isoforms was increased in myopathic skeletal muscles. Our data demonstrate that i) MyBP-C isoforms are differentially regulated in both cardiac and skeletal muscles, ii) cMyBP-C is dispensable for the development of skeletal muscle with no functional or structural consequences in the adult myocyte, and iii) skeletal isoforms can transcomplement in the heart in the absence of cMyBP-C.


Assuntos
Proteínas de Transporte/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Miocárdio/metabolismo , Animais , Western Blotting , Proteínas de Transporte/genética , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Microscopia Eletrônica , Contração Muscular , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/fisiologia , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sarcômeros/metabolismo , Sarcômeros/fisiologia , Sarcômeros/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa