Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 96(9): e0003822, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35420442

RESUMO

Due to the limitation of human studies with respect to individual difference or the accessibility of fresh tissue samples, how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in pathological complications in lung, the main site of infection, is still incompletely understood. Therefore, physiologically relevant animal models under realistic SARS-CoV-2 infection conditions would be helpful to our understanding of dysregulated inflammation response in lung in the context of targeted therapeutics. Here, we characterized the single-cell landscape in lung and spleen upon SARS-CoV-2 infection in an acute severe disease mouse model that replicates human symptoms, including severe lung pathology and lymphopenia. We showed a reduction of lymphocyte populations and an increase of neutrophils in lung and then demonstrated the key role of neutrophil-mediated lung immunopathology in both mice and humans. Under severe conditions, neutrophils recruited by a chemokine-driven positive feedback produced elevated "fatal signature" proinflammatory genes and pathways related to neutrophil activation or releasing of granular content. In addition, we identified a new Cd177high cluster that is undergoing respiratory burst and Stfahigh cluster cells that may dampen antigen presentation upon infection. We also revealed the devastating effect of overactivated neutrophil by showing the highly enriched neutrophil extracellular traps in lung and a dampened B-cell function in either lung or spleen that may be attributed to arginine consumption by neutrophil. The current study helped our understanding of SARS-CoV-2-induced pneumonia and warranted the concept of neutrophil-targeting therapeutics in COVID-19 treatment. IMPORTANCE We demonstrated the single-cell landscape in lung and spleen upon SARS-CoV-2 infection in an acute severe disease mouse model that replicated human symptoms, including severe lung pathology and lymphopenia. Our comprehensive study revealed the key role of neutrophil-mediated lung immunopathology in SARS-CoV-2-induced severe pneumonia, which not only helped our understanding of COVID-19 but also warranted the concept of neutrophil targeting therapeutics in COVID-19 treatment.


Assuntos
COVID-19 , Pulmão , Neutrófilos , Animais , COVID-19/imunologia , Modelos Animais de Doenças , Humanos , Pulmão/patologia , Pulmão/virologia , Linfopenia/virologia , Camundongos , Neutrófilos/imunologia , SARS-CoV-2 , Baço/patologia , Baço/virologia
2.
FASEB J ; 34(1): 648-662, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914678

RESUMO

Histone deacetylases 3 (HDAC3) modulates the acetylation state of histone and non-histone proteins and could be a powerful regulator of the inflammatory process in stroke. Inflammasome activation is a ubiquitous but poorly understood consequence of acute ischemic stroke. Here, we investigated the potential contributions of HDAC3 to inflammasome activation in primary cultured microglia and experimental stroke models. In this study, we documented that HDAC3 expression was increased in microglia of mouse experimental stroke model. Intraperitoneal injection of RGFP966 (a selective inhibitor of HDAC3) decreased infarct size and alleviated neurological deficits after the onset of middle cerebral artery occlusion (MCAO). In vitro data indicated that LPS stimulation evoked a time-dependent increase of HDAC3 and absent in melanoma 2 (AIM2) inflammasome in primary cultured microglia. Interestingly, AIM2 was subjected to spatiotemporal regulation by RGFP966. The ability of RGFP966 to inhibit the AIM2 inflammasome was confirmed in an experimental mouse model of stroke. As expected, AIM2 knockout mice also demonstrated significant resistance to ischemia injury compared with their wild-type littermates. RGFP966 failed to exhibit extra protective effects in AIM2-/- stroke mice. Furthermore, we found that RGFP966 enhanced STAT1 acetylation and subsequently attenuated STAT1 phosphorylation, which may at least partially contributed to the negative regulation of AIM2 by RGFP966. Together, we initially found that RGFP966 alleviated the inflammatory response and protected against ischemic stroke by regulating the AIM2 inflammasome.


Assuntos
Acrilamidas/farmacologia , Isquemia Encefálica/tratamento farmacológico , Proteínas de Ligação a DNA/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Inflamassomos/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Animais , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Inflamassomos/metabolismo , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos
3.
J Neuroinflammation ; 17(1): 17, 2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31926564

RESUMO

BACKGROUND: Dendritic cell-associated C-type lectin-1 (Dectin-1) receptor has been reported to be involved in neuroinflammation in Alzheimer's disease and traumatic brain injury. The present study was designed to investigate the role of Dectin-1 and its downstream target spleen tyrosine kinase (Syk) in early brain injury after ischemic stroke using a focal cortex ischemic stroke model. METHODS: Adult male C57BL/6 J mice were subjected to a cerebral focal ischemia model of ischemic stroke. The neurological score, adhesive removal test, and foot-fault test were evaluated on days 1, 3, 5, and 7 after ischemic stroke. Dectin-1, Syk, phosphorylated (p)-Syk, tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS) expression was analyzed via western blotting in ischemic brain tissue after ischemic stroke and in BV2 microglial cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) injury in vitro. The brain infarct volume and Iba1-positive cells were evaluated using Nissl's and immunofluorescence staining, respectively. The Dectin-1 antagonist laminarin (LAM) and a selective inhibitor of Syk phosphorylation (piceatannol; PIC) were used for the intervention. RESULTS: Dectin-1, Syk, and p-Syk expression was significantly enhanced on days 3, 5, and 7 and peaked on day 3 after ischemic stroke. The Dectin-1 antagonist LAM or Syk inhibitor PIC decreased the number of Iba1-positive cells and TNF-α and iNOS expression, decreased the brain infarct volume, and improved neurological functions on day 3 after ischemic stroke. In addition, the in vitro data revealed that Dectin-1, Syk, and p-Syk expression was increased following the 3-h OGD and 0, 3, and 6 h of reperfusion in BV2 microglial cells. LAM and PIC also decreased TNF-α and iNOS expression 3 h after OGD/R induction. CONCLUSION: Dectin-1/Syk signaling plays a crucial role in inflammatory activation after ischemic stroke, and further investigation of Dectin-1/Syk signaling in stroke is warranted.


Assuntos
Inflamação/metabolismo , Lectinas Tipo C/metabolismo , Acidente Vascular Cerebral/metabolismo , Quinase Syk/metabolismo , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa