RESUMO
The periodic lateral migration of submicrometer cells is the primary factor leading to low precision in a spiral microchannel during cell isolation. In this study, a mathematical predictive model (PM) is derived for the lateral position of cells during the periodic lateral migration process. We analyze the relationship of migration period, migration width, and starting point of lateral migration with microchannel structure and flow conditions and determine the empirical coefficients in PM. Results indicate that the aspect ratio of the microchannel and the Reynolds number (Re) are key factors that influence the periodicity of the cell lateral migration. The lateral migration width is jointly affected by Re, the cell blockage ratio, and the microchannel curvature radius. The inlet structure of the microchannel and the ratio of the cell sample to the sheath flow rate are critical parameters for regulating the initial position. Moreover, the structure of the pressure field at the inlet constrains the distribution range of the starting point of the lateral migration. Regardless of whether the particles/cells undergo 0.5, 1, or multiple lateral migration cycles, the lateral positions predicted by PM align well with the experimental observations, thus verifying the accuracy of PM. This research helps to elucidate the characteristics of periodic lateral migration of cells in spiral microchannels and can provide practical guidance for the development and optimization of miniature spiral microchannel chips for precise cell isolation.
RESUMO
Gastric cancer is a serious malignant tumor in the world, accounting for the third cause of cancer death worldwide. The pathogenesis of gastric cancer is very complex, in which epigenetic inheritance plays an important role. In our study, we found that DZIP3 was significantly up-regulated in gastric cancer tissues as compared to adjacent normal tissue, which suggested it may be play a crucial part in gastric cancer. To clarify the mechanism of it, we further analyzed the interacting proteome and transcriptome of DZIP3. An association between DZIP3 and some epigenetic regulators, such as CUL4B complex, was verified. We also present the first proteomic characterization of the protein-protein interaction (PPI) network of DZIP3. Then, the transcriptome analysis of DZIP3 demonstrated that knockdown DZIP3 increased a cohort of genes, including SETD7 and ZBTB4, which have essential role in tumors. We also revealed that DZIP3 promotes proliferation and metastasis of gastric cancer cells. And the higher expression of DZIP3 is positively associated with the poor prognosis of several cancers. In summary, our study revealed a mechanistic role of DZIP3 in promoting proliferation and metastasis in gastric cancer, supporting the pursuit of DZIP3 as a potential target for gastric cancer therapy.
Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Proteômica , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Metástase Neoplásica , Histona-Lisina N-Metiltransferase/genética , Proteínas de Ligação a RNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Culina/metabolismoRESUMO
Maxillofacial bone defects can severely impact quality of life by impairing physiological functions such as chewing, breathing, swallowing, and pronunciation. Polyether ether ketone (PEEK) is commonly used for the repair of maxillofacial defects due to its mechanical adaptability, while its osteogenic properties still need refinement. Herein, we have utilized the piezoelectric effect exhibited by barium titanate (BTO) under low-intensity pulsed ultrasound (LIPUS) to develop an ultrasound responsive PEEK (PDA@BTO-SPEEK, PBSP) through the mediating effect of polydopamine (PDA), for repairing maxillofacial bone defects. After modification by PDA@BTO, PBSP possesses better hydrophilicity, which is conducive to cell growth and adhesion. Simultaneously, by virtue of the piezoelectric characteristics of BTO, PBSP obtains a piezoelectric coefficient that matches the bone cortex. Notably, when PBSP is stimulated by LIPUS, it can generate stable electricity and effectively accelerate the osteogenic differentiation of osteoblasts through the regulation of the Piezo1-induced calcium (Ca2+) influx and Akt/GSK3ß/ß-catenin pathway. In addition, PBSP presents satisfactory therapeutic effects in rat skull defect models, and its osteogenic efficiency can be further improved under LIPUS stimulation with high tissue penetration. Collectively, PBSP + LIPUS exhibits great potential as a promising alternative strategy for the repair of maxillofacial bone defects.
Assuntos
Benzofenonas , Glicogênio Sintase Quinase 3 beta , Cetonas , Osteogênese , Polietilenoglicóis , Polímeros , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , beta Catenina , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Polímeros/química , Osteogênese/efeitos dos fármacos , Ratos , Polietilenoglicóis/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cetonas/química , Cetonas/farmacologia , beta Catenina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Ondas Ultrassônicas , Indóis/química , Indóis/farmacologia , Masculino , Transdução de Sinais/efeitos dos fármacos , Crânio/efeitos dos fármacos , Titânio/química , Titânio/farmacologia , Regeneração Óssea/efeitos dos fármacosRESUMO
BACKGROUND: Worldwide invasion and expansion of Aedes albopictus, an important vector of dengue, chikungunya, and Zika viruses, has become a serious concern in global public health. Chemical insecticides are the primary means currently available to control the mosquito populations. However, long-term and large-scale use of insecticides has selected for resistance in the mosquito that is accompanied by a genetic load that impacts fitness. RESULTS: A number of laboratory strains representing different resistance mechanisms were isolated and identified from laboratory-derived, deltamethrin-resistant Ae. albopictus recovered in previous work. Resistance levels and fitness costs of the strains were evaluated and compared to characterize the evolution of the resistance genotypes and phenotypes. The heterozygous F1534S mutation (1534F/S) in the voltage gated sodium channel (vgsc) gene product (VGSC), first detected in early stages of resistance evolution, not only confers high-level resistance, but also produces no significant fitness costs, leading to the rapid spread of resistance in the population. This is followed by the increase in frequency of homozygous F1534S (1534S/S) mosquitoes that have significant fitness disadvantages, prompting the emergence of an unlinked I1532T mutation with fewer side effects and a mating advantage better adapted to the selection and reproductive pressures imposed in the experiments. Metabolic resistance with no significant fitness cost and mediating a high-tolerance resistance phenotype may play a dominant role in the subsequent evolution of resistance. The different resistant strains had similar vector competence for dengue virus type-2 (DENV-2). Furthermore, a comparative analysis of vectorial capacity revealed that increased survival due to deltamethrin resistance balanced the negative fitness cost effects and contributed to the risk of dengue virus (DENV) transmission by resistant populations. The progressive evolution of resistance results in mosquitoes with both target-site insensitivity and metabolic resistance with lower fitness costs, which further leads to resistant populations with both high resistance levels and vectorial capacity. CONCLUSIONS: This study reveals a possible mechanism for the evolution of deltamethrin resistance in Aedes albopictus. These findings will help guide practical strategies for insecticide use, resistance management and the prevention and control of mosquito-borne disease.
Assuntos
Aedes , Vírus da Dengue , Inseticidas , Infecção por Zika virus , Zika virus , Animais , Aedes/genética , Vírus da Dengue/genética , Inseticidas/farmacologia , Mosquitos Vetores/genéticaRESUMO
In a search for novel nonsugar α-glucosidase inhibitors for diabetes treatment, a series of N-(phenylsulfonyl)thiazole-2-carboxamide derivatives were designed and synthesized, the α-glucosidase inhibitory activities were then evaluated. Several compounds with promising α-glucosidase inhibitory effects were identified. Among these, compound W24 which shows low cytotoxicity and good α-glucosidase inhibitory activity with an IC50 value of 53.0 ± 7.7 µM, is more competitive compared with the commercially available drug acarbose (IC50 = 228.3 ± 9.2 µM). W24 was identified as a promising candidate in the development of α-glucosidase inhibitors. Molecular docking studies and molecular dynamics simulation were also performed to reveal the binding pattern of the active compound to α-glucosidase, and the binding free energy of the best compound W24 was 36.3403 ± 3.91 kcal/mol.
Assuntos
Inibidores de Glicosídeo Hidrolases , Tiazóis , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tiazóis/farmacologia , Tiazóis/química , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo , Estrutura MolecularRESUMO
Atrial fibrillation (AF) is a life-threatening heart condition, and its early detection and treatment have garnered significant attention from physicians in recent years. Traditional methods of detecting AF heavily rely on doctor's diagnosis based on electrocardiograms (ECGs), but prolonged analysis of ECG signals is very time-consuming. This paper designs an AF detection model based on the Inception module, constructing multi-branch detection channels to process raw ECG signals, gradient signals, and frequency signals during AF. The model efficiently extracted QRS complex and RR interval features using gradient signals, extracted P-wave and f-wave features using frequency signals, and used raw signals to supplement missing information. The multi-scale convolutional kernels in the Inception module provided various receptive fields and performed comprehensive analysis of the multi-branch results, enabling early AF detection. Compared to current machine learning algorithms that use only RR interval and heart rate variability features, the proposed algorithm additionally employed frequency features, making fuller use of the information within the signals. For deep learning methods using raw and frequency signals, this paper introduced an enhanced method for the QRS complex, allowing the network to extract features more effectively. By using a multi-branch input mode, the model comprehensively considered irregular RR intervals and P-wave and f-wave features in AF. Testing on the MIT-BIH AF database showed that the inter-patient detection accuracy was 96.89%, sensitivity was 97.72%, and specificity was 95.88%. The proposed model demonstrates excellent performance and can achieve automatic AF detection.
Assuntos
Algoritmos , Fibrilação Atrial , Eletrocardiografia , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Humanos , Eletrocardiografia/métodos , Aprendizado de Máquina , Frequência Cardíaca , Aprendizado ProfundoRESUMO
Potassium-ion batteries (PIBs) have become one of the promising candidates for electrochemical energy storage that can provide low-cost and high-performance advantages. The poor cyclability and rate capability of PIBs are due to the intensive structural change of electrode materials during battery operation. Carbon-based materials as anodes have been successfully commercialized in lithium- and sodium-ion batteries but is still struggling in potassium-ion battery field. This work conducts structural engineering strategy to induce anionic defects within the carbon structures to boost the kinetics of PIBs anodes. The carbon framework provides a strong and stable structure to accommodate the volume variation of materials during cycling, and the further phosphorus doping modification is shown to enhance the rate capability. This is found due to the change of the pore size distribution, electronic structures, and hence charge storage mechanism. The optimized electrode in this work shows a high capacity of 175 mAh g-1 at a current density of 0.2 A g-1 and the enhancement of rate performance as the PIB anode (60% capacity retention with the current density increase of 50 times). This work, therefore provides a rational design for guiding future research on carbon-based anodes for PIBs.
RESUMO
The cause of epilepsy with or without developmental disorders was unidentified in a significant proportion of patients. Whole exome sequencing was performed in three unrelated patients with early-onset epilepsy, with or without developmental delay and intellectual disability. We identified de novo heterozygous variants (p.Arg119Trp, p.Val99_Ser102del, c.260_263 + 11delinsGCCCA) in the ATP6V0C gene, which encodes a subunit of vacuolar ATPase. Three-dimensional protein modeling showed that the variant p.Arg119Trp in ATP6V0C affected the hydrogen bonds with the 115th and 123rd residues, and the protein stability. The p.Val99_Ser102del and c.260_263 + 11delinsGCCCA variants in the other two patients resulted in a loss of function with microdeletion or splicing effects. Their seizures and psychomotor developmental outcomes were different, and all patients had a good prognosis. Our study provides evidence that de novo heterozygous ATP6V0C variants are related to epilepsy and associated with or without developmental delay.
Assuntos
Epilepsia , Deficiência Intelectual , ATPases Vacuolares Próton-Translocadoras , Humanos , Criança , Epilepsia/genética , Convulsões/genética , Deficiência Intelectual/genética , Deficiências do Desenvolvimento/genética , ATPases Vacuolares Próton-Translocadoras/genéticaRESUMO
Elevation of intraocular pressure (IOP) is a major, controllable risk factor of primary open-angle glaucoma (POAG). Transforming growth factor-ß2 (TGF-ß2)-induced excessive accumulation of extracellular matrix (ECM) in the trabecular meshwork (TM) has been demonstrated to contribute significantly to the development of high IOP. We previously showed that treatment with salidroside (Sal), a plant-derived glucoside, can ameliorate the TGF-ß2-induced ECM expression in cultured human TM cells and reduce TGF-ß2-induced ocular hypertension in mice. In the current study, its underlying molecular mechanism associated with microRNA-210-3p (miR-210-3p) was characterized. We discovered that, in TM tissues of POAG patients, there was an increase in miR-210-3p. And miR-210-3p mediated a portion of the pathological effects of TGF-ß2 in vitro (excessive accumulation of ECM in cultured human TM cells) and in vivo (mouse ocular hypertension and ECM accumulation in the TM). Most interestingly, miR-210-3p was down-regulated by Sal, which appeared to mediate a significant portion of its IOP-lowering effect. Thus, these results shed light on the probable molecular mechanisms of TGF-ß2 and Sal and indicate that manipulation of miR-210-3p level/activity represents a potential new therapeutic strategy for POAG.
Assuntos
Glaucoma de Ângulo Aberto , MicroRNAs , Hipertensão Ocular , Humanos , Animais , Camundongos , Fator de Crescimento Transformador beta2/metabolismo , Malha Trabecular/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Matriz Extracelular/metabolismo , Hipertensão Ocular/metabolismo , Pressão Intraocular , Células Cultivadas , MicroRNAs/metabolismoRESUMO
Schistosomiasis is an important, neglected tropical disease. Schistosoma japonicum can evade host attacks by regulating the host's immunity, causing continuous infection. However, interactions between the host's immune system and S. japonicum are unclear. Our previous research found that the Sj16 protein isolated from S. japonicum has an anti-inflammatory effect in the host. However, the role of Sj16 in the regulation of host immunity in S. japonicum infection is not clear. Here, we applied the CRISPR/Cas9 technique to knockout Sj16 in S. japonicum eggs and investigated the effect of Sj16 in regulating host immunity. We found egg viability decreased after Sj16 knockout. In addition, we found granulomatous inflammation increased, the T-cell immune response enhanced and the immune microenvironment changed in mice model injected with Sj16-knockout eggs by tail vein. These findings suggested that S. japonicum could regulate host immunity through Sj16 to evade the host immune attack and cause continuous infection. In addition, we confirmed the application of CRISPR/Cas9-mediated gene reprogramming for functional genomics in S. japonicum.
Assuntos
Schistosoma japonicum , Camundongos , Animais , Schistosoma japonicum/genética , Técnicas de Inativação de Genes , Sistemas CRISPR-Cas , Anti-Inflamatórios/metabolismo , ImunidadeRESUMO
Melophagus ovinus is a hematophagous insect that is distributed worldwide and plays a crucial role in transmitting disease-causing pathogens. From June 2021 to March 2022, a total of 370 M. ovinus were collected from 11 sampling points in southern Xinjiang, China. The specimens were identified using morphological and molecular analyses. Rickettsia spp. and Anaplasma ovis were detected from all the samples using seven Rickettsia-specific genetic markers and the msp-4 gene of A. ovis. Approximately 11% of the M. ovinus specimens were positive for Rickettsia spp., and Candidatus Rickettsia barbariae was the most predominant species (35/41; 85.4%), while R. massiliae was least prevalent (6/41; 14.6%). Approximately 10.5% (39/370) of the M. ovinus specimens were positive for A. ovis of genotype III, which was co-detected with Candidatus R. barbariae in M. ovinus (3/370; 0.8%). To the best of our knowledge, this is the first report of the detection of R. massiliae and Candidatus R. barbariae in M. ovinus globally. The detection and control of insect-borne diseases originating from M. ovinus should be strengthened in southern Xinjiang, an area important to animal husbandry and production.
Assuntos
Anaplasma ovis , Dípteros , Rickettsia , Animais , Ovinos , Rickettsia/genética , Filogenia , Dípteros/microbiologia , China , AnaplasmaRESUMO
BACKGROUND: SMYD3, a member of the SET and MYND domain-containing (SMYD) family, is a histone methyltransferase (HMT) and transcription factor that plays an important role in transcriptional regulation in human carcinogenesis. RESULTS: Using affinity purification and mass spectrometry assays to identify SMYD3-associated proteins in hepatocellular carcinoma (HCC) cells, we found several previously undiscovered SMYD3-interacting proteins, including the NuRD (MTA1/2) complex, the METTL family, and the CRL4B complex. Transcriptomic analysis of the consequences of knocking down SMYD3, MTA1, or MTA2 in HCC cells showed that SMYD3/NuRD complex targets a cohort of genes, some of which are critically involved in cell growth and migration. qChIP analyses showed that SMYD3 knockdown led to a significant reduction in the binding of MTA1 or MTA2 to the promoters of IGFBP4 and led to a significant decrease in H4K20me3 and a marked increase in H4Ac at the IGFBP4 promoter. In addition, we demonstrated that SMYD3 promotes cell proliferation, invasion, and tumorigenesis in vivo and in vitro and found that its expression is markedly upregulated in human liver cancer. Knockdown of MTA1 or MTA2 had the same effect as knockdown of SMYD3 on proliferation and invasion of hepatocellular carcinoma cells. Catalytic mutant SMYD3 could not rescue the phenotypic effects caused by knockdown of SMYD3. Inhibitors of SMYD3 effectively inhibited the proliferation and invasiveness of HCC cells. CONCLUSIONS: These findings revealed that SMYD3 could transcriptionally repress a cohort of target genes expression by associating with the NuRD (MTA1/2) complex, thereby promoting the proliferation and invasiveness of HCC cells. Our results support the case for pursuing SMYD3 as a practical prognostic marker or therapeutic target against HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular , Fatores de Transcrição/genética , Proliferação de Células , Linhagem Celular Tumoral , Invasividade Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismoRESUMO
Colorimetric characterization is the basis of color information management in color imaging systems. In this paper, we propose a colorimetric characterization method based on kernel partial least squares (KPLS) for color imaging systems. This method takes the kernel function expansion of the three-channel response values (RGB) in the device-dependent space of the imaging system as input feature vectors, and CIE-1931 XYZ as output vectors. We first establish a KPLS color-characterization model for color imaging systems. Then we determine the hyperparameters based on nested cross validation and grid search; a color space transformation model is realized. The proposed model is validated with experiments. The CIELAB, CIELUV and CIEDE2000 color differences are used as evaluation metrics. The results of the nested cross validation test for the ColorChecker SG chart show that the proposed model is superior to the weighted nonlinear regression model and the neural network model. The method proposed in this paper has good prediction accuracy.
Assuntos
Algoritmos , Colorimetria , Análise dos Mínimos Quadrados , Redes Neurais de Computação , Gestão da Informação , CorRESUMO
CONTEXT: Ginsenoside metabolite compound K (CK) is an active metabolite produced by ginsenosides in vivo that has an anti-arthritic effect related to the glucocorticoid receptor (GR). However, the potential mechanisms of CK remain unclear. OBJECTIVE: This study explores the role and potential mechanisms of CK in vivo and in vitro. MATERIALS AND METHODS: Adjuvant arthritis (AA) model was induced in Sprague-Dawley (SD) rats; the rats were randomly divided into four groups (n = 10): normal, AA, CK (80 mg/kg), and dexamethasone (Dex) group (1 mg/kg). From day 15, rats were treated with CK (once a day, i.g.) and Dex (once every 3 days, i.p.) for 18 days. To further verify the mechanism of CK, fibroblast-like synoviocytes (FLS) were stimulated by tumour necrosis factor α (TNF-α) to establish an inflammatory model in vitro. RESULTS: CK (80 mg/kg) reduced paw swelling (52%) and arthritis global assessment (31%) compared to that in AA rats. In addition, CK (80 mg/kg) suppressed GLUT1 (38%), HK2 (50%), and PKM2 (56%) levels compared with those in AA FLS. However, the effects of CK (30 µM) on these events were weakened or enhanced after GR knockdown or overexpression in FLS stimulated by TNF-α (30 ng/mL). CK (80 mg/kg) also downregulated the expression of P65 (61%), p-IκB (92%), and HIF-1α (59%). DISCUSSION AND CONCLUSIONS: The inhibition of CK on glycolysis and the NF-κB/HIF-1α pathway is potentially mediated through activating GR. These findings provide experimental evidence for elucidating the molecular mechanism of CK in treating rheumatoid arthritis (RA).
Assuntos
Artrite Experimental , Ginsenosídeos , Sinoviócitos , Ratos , Animais , NF-kappa B/metabolismo , Receptores de Glucocorticoides/metabolismo , Ginsenosídeos/farmacologia , Artrite Experimental/patologia , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Proliferação de Células , Fibroblastos/metabolismo , Glicólise , Membrana Sinovial/metabolismoRESUMO
Electrocatalytic oxygen reduction reaction (ORR) has been intensively studied for environmentally benign applications. However, insufficient understanding of ORR 2 e- -pathway mechanism at the atomic level inhibits rational design of catalysts with both high activity and selectivity, causing concerns including catalyst degradation due to Fenton reaction or poor efficiency of H2 O2 electrosynthesis. Herein we show that the generally accepted ORR electrocatalyst design based on a Sabatier volcano plot argument optimises activity but is unable to account for the 2 e- -pathway selectivity. Through electrochemical and operando spectroscopic studies on a series of CoNx /carbon nanotube hybrids, a construction-driven approach based on an extended "dynamic active site saturation" model that aims to create the maximum number of 2 e- ORR sites by directing the secondary ORR electron transfer towards the 2 e- intermediate is proven to be attainable by manipulating O2 hydrogenation kinetics.
RESUMO
The electrochemical effect of isotope (EEI) of water is introduced in the Zn-ion batteries (ZIBs) electrolyte to deal with the challenge of severe side reactions and massive gas production. Due to the low diffusion and strong coordination of ions in D2 O, the possibility of side reactions is decreased, resulting in a broader electrochemically stable potential window, less pH change, and less zinc hydroxide sulfate (ZHS) generation during cycling. Moreover, we demonstrate that D2 O eliminates the different ZHS phases generated by the change of bound water during cycling because of the consistently low local ion and molecule concentration, resulting in a stable interface between the electrode and electrolyte. The full cells with D2 O-based electrolyte demonstrated more stable cycling performance which displayed â¼100 % reversible efficiencies after 1,000 cycles with a wide voltage window of 0.8-2.0â V and 3,000 cycles with a normal voltage window of 0.8-1.9â V at a current density of 2â A g-1 .
RESUMO
Disco-interacting protein 2 C (DIP2C) encodes a disco-interacting protein and is highly expressed in the nervous system. Most variants of DIP2C are microdeletions on chromosome 10p15.3. This study reports a 17-month-old infant with focal infantile epilepsy who has a single-nucleotide variation in DIP2C that results in alternative splicing. The de novo variation (NM_014974.3: c.1057+2T>G) in DIP2C was uncovered through whole-exome sequencing. Minigene assays were performed and verified the alternative splicing caused by the variation. Finally, an 80-bp nucleotide deletion in the 3' end of Exon 8 was detected. Our study identified a de novo splicing variant that affects the coding length of DIP2C. This finding provides a new candidate gene for focal infantile epilepsy. Importantly, our finding is the first to associate a single nucleotide variant in DIP2C with focal infantile epilepsy.
Assuntos
Epilepsia , Proteínas de Neoplasias , Espasmos Infantis , Processamento Alternativo , Epilepsia/genética , Humanos , Lactente , Proteínas de Neoplasias/genética , Isoformas de Proteínas/genética , Splicing de RNA/genética , Espasmos Infantis/genética , Sequenciamento do Exoma/métodosRESUMO
Sesquiterpene lactones (STLs) and diterpene lactones (DTLs) are two groups of common phytochemicals with similar structures. It's frequently reported that both exhibit changeable pharmacokinetics (PK) in vivo, especially the unstable absorption and extensive metabolism. However, the recognition of their PK characteristics is still scattered. In this review, representative STLs (atractylenolides, alantolactone, costunolide, artemisinin, etc.) and DTLs (ginkgolides, andrographolide, diosbulbins, triptolide, etc.) as typical cases are discussed in detail. We show how the differences of treatment regimens and subjects alter the PK of STLs and DTLs, with emphasis on the effects from absorption and metabolism. These compounds tend to be quite permeable in intestinal epithelium, but gastrointestinal pH and efflux transporters (represented by P-glycoprotein) have great impact and result in the unstable absorption. As the only characteristic functional moiety, the metabolic behavior of lactone ring is not dominant. The α, ß-unsaturated lactone moiety has the strongest metabolic activity. While with the increase of low-activity saturated lactone moieties, the metabolism is led by other groups more easily. The phase I (oxidation, reduction and hydrolysis reaction) and II metabolism (conjugation reaction) are both extensive. CYP450s, mainly CYP3A4, are largely involved in biotransformation. However, only UGTs (UGT1A3, UGT1A4, UGT2B4 and UGT2B7) has been mentioned in studies about phase II metabolic enzymes. Our work offers a beneficial reference for promoting the safety evaluation and maximizing the utilization of STLs and DTLs.
Assuntos
Diterpenos , Sesquiterpenos , Humanos , Lactonas/química , Lactonas/metabolismo , Compostos Fitoquímicos , Sesquiterpenos/química , Sesquiterpenos/metabolismoRESUMO
PURPOSE: Epigenetic regulation plays critical roles in cancer progression, and high-frequency mutations or expression variations in epigenetic regulators have been frequently observed in tumorigenesis, serving as biomarkers and targets for cancer therapy. Here, we aimed to explore the function of epigenetic regulators in breast cancer. METHODS: The mutational landscape of epigenetic regulators in breast cancer samples was investigated based on datasets from the Cancer Genome Atlas. The Kaplan-Meier method was used for survival analysis. RNA sequencing (RNA-seq) in MCF-7 cells transfected with control siRNA or KMT2C siRNA was performed. Quantitative reverse transcription-PCR and chromatin immunoprecipitation were used to validate the RNA-seq results. RESULTS: Among the 450 epigenetic regulators, KMT2C was frequently mutated in breast cancer samples. The tumor mutational burden (TMB) was elevated in breast cancer samples with KMT2C mutations or low KMT2C mRNA levels compared to their counterparts with wild-type KMT2C or high KMT2C mRNA levels. Somatic mutation and low expression of KMT2C were independently correlated with the poor overall survival (OS) and disease-free survival (DFS) of the breast cancer samples, respectively. RNA-seq analysis combined with chromatin immunoprecipitation and qRT-PCR assays revealed that the depletion of KMT2C remarkably affected the expression of DNA damage repair-related genes. More importantly, the low expression of KMT2C was related to breast cancer cell sensitivity to chemotherapy and longer OS of breast cancer patients who underwent chemotherapy. CONCLUSION: We conclude that KMT2C could serve as a potential biomarker of prognosis and chemotherapy sensitivity by affecting the DNA damage repair-related genes of breast cancer.
Assuntos
Neoplasias da Mama , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Epigênese Genética , Feminino , Humanos , Mutação , PrognósticoRESUMO
A universal strategy is developed to construct metal-organic framework (MOF)-based superhydrophobic/superoleophilic materials by the reaction of activated MOFs and octadecylamine. In particular, S-MIL-101(Cr) composite can efficiently separate chloroform, toluene, petroleum ether, and n-hexane from water with excellent oil-water separation performance, with potential application in the environmental field.