Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 259(4): 86, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453695

RESUMO

MAIN CONCLUSION: MdPRX34L enhanced resistance to Botryosphaeria dothidea by increasing salicylic acid (SA) and abscisic acid (ABA) content as well as the expression of related defense genes. The class III peroxidase (PRX) multigene family is involved in complex biological processes. However, the molecular mechanism of PRXs in the pathogen defense of plants against Botryosphaeria dothidea (B. dothidea) remains unclear. Here, we cloned the PRX gene MdPRX34L, which was identified as a positive regulator of the defense response to B. dothidea, from the apple cultivar 'Royal Gala.' Overexpression of MdPRX34L in apple calli decreased sensitivity to salicylic acid (SA) and abscisic acid(ABA). Subsequently, overexpression of MdPRX34L in apple calli increased resistance to B. dothidea infection. In addition, SA contents and the expression levels of genes related to SA synthesis and signaling in apple calli overexpressing MdPRX34L were higher than those in the control after inoculation, suggesting that MdPRX34L enhances resistance to B. dothidea via the SA pathway. Interestingly, infections in apple calli by B. dothidea caused an increase in endogenous levels of ABA followed by induction of ABA-related genes expression. These findings suggest a potential mechanism by which MdPRX34L enhances plant-pathogen defense against B. dothidea by regulating the SA and ABA pathways.


Assuntos
Ascomicetos , Malus , Malus/metabolismo , Resistência à Doença/genética , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Doenças das Plantas/microbiologia
2.
J Hum Genet ; 67(12): 687-690, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35996014

RESUMO

BACKGROUND: Recent researches on Parkinson's disease (PD) pathogenesis discovered the correlation between PD and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) dysfunction and reduction of PPARGC1A gene expression. Hence, we detected PPARGC1A rare variants to clarify their effect on PD risk in a large population of PD patients in mainland China. METHODS: We applied whole-exome sequencing (WES) to 1917 patients with early-onset or familial PD and 1652 controls (WES cohort), and whole-genome sequencing (WGS) to 1962 patients with sporadic late-onset PD and 1279 controls (WGS cohort). To identify PPARGC1A rare variants, we used burden analysis to assess the relationship between PPARGC1A rare variants and PD susceptibility. RESULTS: 30 rare missense variants in the cohort WES and 21 missense variants in the cohort WGS have been detected in the study and PPARGC1A missense variants are significantly associated with early-onset and familial PD susceptibility in our study (P = 0.012), which supports evidence that PPARGC1A rare variants are involved in the onset of early-onset and familial PD. CONCLUSIONS: The study suggested that PPARGC1A rare variants may contribute to the risk of early-onset and familial PD.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Sequenciamento do Exoma , Estudos de Coortes , China/epidemiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
3.
Proc Natl Acad Sci U S A ; 115(45): 11567-11572, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348779

RESUMO

Whole-exome sequencing has been successful in identifying genetic factors contributing to familial or sporadic Parkinson's disease (PD). However, this approach has not been applied to explore the impact of de novo mutations on PD pathogenesis. Here, we sequenced the exomes of 39 early onset patients, their parents, and 20 unaffected siblings to investigate the effects of de novo mutations on PD. We identified 12 genes with de novo mutations (MAD1L1, NUP98, PPP2CB, PKMYT1, TRIM24, CEP131, CTTNBP2, NUS1, SMPD3, MGRN1, IFI35, and RUSC2), which could be functionally relevant to PD pathogenesis. Further analyses of two independent case-control cohorts (1,852 patients and 1,565 controls in one cohort and 3,237 patients and 2,858 controls in the other) revealed that NUS1 harbors significantly more rare nonsynonymous variants (P = 1.01E-5, odds ratio = 11.3) in PD patients than in controls. Functional studies in Drosophila demonstrated that the loss of NUS1 could reduce the climbing ability, dopamine level, and number of dopaminergic neurons in 30-day-old flies and could induce apoptosis in fly brain. Together, our data suggest that de novo mutations could contribute to early onset PD pathogenesis and identify NUS1 as a candidate gene for PD.


Assuntos
Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Doença de Parkinson/genética , Receptores de Superfície Celular/genética , Adulto , Idade de Início , Animais , Apoptose/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/antagonistas & inibidores , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Sequência de Bases , Encéfalo/patologia , Estudos de Casos e Controles , Estudos de Coortes , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Diagnóstico Precoce , Feminino , Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Proteínas do Tecido Nervoso/metabolismo , Pais , Doença de Parkinson/diagnóstico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Superfície Celular/metabolismo , Irmãos
4.
Biochem Biophys Res Commun ; 533(4): 717-722, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-32981681

RESUMO

Auxin plays an important role in plant growth and development; for example, it regulates the elongation and division of plant cells, the formation of plantlet's geotropism and phototropism, and the growth of main lateral roots and hypocotyl. IAA gene is associated with auxin and can response to biotic and abiotic stress in plants. However, the regulatory effect of auxin on anthocyanin accumulation has been rarely reported. In this study, we show that auxin inhibites the accumulation of anthocyanin and decreases the expression of genes related to anthocyanin synthesis in calli, leaves, and seedlings of apple. The expression levels of MdIAA family genes were determined, and we found that MdIAA26 significantly responded to auxin, which also induced MdIAA26 degradation. Functional analysis of MdIAA26 showed that overexpressing MdIAA26 in apple calli and Arabidopsis could promote the accumulation of anthocyanin and up-regulate the genes related to anthocyanin synthesis. Furthermore, the MdIAA26-overexpressing Arabidopsis could counteract auxin-induced inhibition on anthocyanin accumulation, which indicates that auxin inhibits the accumulation of anthocyanin in apple by degrading MdIAA26 protein.


Assuntos
Antocianinas/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Malus/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antocianinas/análise , Arabidopsis/metabolismo , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Malus/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plântula/metabolismo , Transdução de Sinais/genética , Regulação para Cima
5.
New Phytol ; 228(6): 1897-1913, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32712992

RESUMO

Climate-driven phenological change across local spatial gradients leads to leaf shape variation. At higher elevations, leaves of broadleaf species tend to become narrower, but the underlying molecular mechanism is largely unknown. In this study, a series of morphometric analyses and biochemical assays, combined with functional identification in apple, were performed. We show that the decrease in apple leaf width with increasing altitude is controlled by a basic/helix-loop-helix transcription factor (bHLH TF), MdbHLH3. The MdbHLH3-overexpressing lines have a lower transcript abundance of MdPIN1 encoding an auxin efflux carrier but a higher transcript abundance of MdGH3-2 encoding a putative auxin amido conjugate synthase, resulting in a lower free auxin concentration; feeding the transgenic leaves with exogenous auxin partially restores leaf width. MdbHLH3 transcriptionally suppresses and activates MdPIN1 and MdGH3-2, respectively, by specifically binding to their promoters. This alters auxin homeostasis and transport, consequently leading to changes in leaf shape. These findings suggest that the bHLH TF MdbHLH3 directly modulates auxin signaling in controlling leaf shape in response to local spatial gradients in apple.


Assuntos
Malus , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Malus/genética , Malus/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Sensors (Basel) ; 19(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484403

RESUMO

Surface-enhanced Raman scattering (SERS) is one of the most special and important Raman techniques. An apparent Raman signal can be observed when the target molecules are absorbed onto the surface of the SERS substrates, especially on the "hot spots" of the substrates. Early research focused on exploring the highly active SERS substrates and their detection applications in label-free SERS technology. However, it is a great challenge to use these label-free SERS sensors for detecting hydrophobic or non-polar molecules, especially in complex systems or at low concentrations. Therefore, antibodies, aptamers, and antimicrobial peptides have been used to effectively improve the target selectivity and meet the analysis requirements. Among these selective elements, aptamers are easy to use for synthesis and modifications, and their stability, affinity and specificity are extremely good; they have been successfully used in a variety of testing areas. The combination of SERS detection technology and aptamer recognition ability not only improved the selection accuracy of target molecules, but also improved the sensitivity of the analysis. Variations of aptamer-based SERS sensors have been developed and have achieved satisfactory results in the analysis of small molecules, pathogenic microorganism, mycotoxins, tumor marker and other functional molecules, as well as in successful photothermal therapy of tumors. Herein, we present the latest advances of the aptamer-based SERS sensors, as well as the assembling sensing platforms and the strategies for signal amplification. Furthermore, the existing problems and potential trends of the aptamer-based SERS sensors are discussed.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Análise Espectral Raman/métodos
7.
Sensors (Basel) ; 18(8)2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30071682

RESUMO

Pathogenic Escherichia coli (E. coli) widely exist in Nature and have always been a serious threat to the human health. Conventional colony forming units counting-based methods are quite time consuming and not fit for rapid detection for E. coli. Therefore, novel strategies for improving detection efficiency and sensitivity are in great demand. Aptamers have been widely used in various sensors due to their extremely high affinity and specificity. Successful applications of aptamers have been found in the rapid detection of pathogenic E. coli. Herein, we present the latest advances in screening of aptamers for E. coli, and review the preparation and application of aptamer-based biosensors in rapid detection of E. coli. Furthermore, the problems and new trends in these aptamer-based biosensors for rapid detection of pathogenic microorganism are also discussed.


Assuntos
Aptâmeros de Nucleotídeos/análise , Técnicas Biossensoriais/métodos , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Aptâmeros de Nucleotídeos/química , Humanos
8.
Zhongguo Zhong Yao Za Zhi ; 43(6): 1209-1214, 2018 Mar.
Artigo em Zh | MEDLINE | ID: mdl-29676130

RESUMO

A new method for detection of Escherichia coli exist in licorice decoction was developed by using DNA-based electrochemical biosensor. The thiolated capture probe was immobilized on a gold electrode at first. Then the aptamer for Escherichia coli was combined with the capture probe by hybridization. Due to the stronger interaction between the aptamer and the E. coli, the aptamer can dissociate from the capture probe in the presence of E. coli in licorice decoction. The biotinylated detection probe was hybridized with the single-strand capture probe. As a result, the electrochemical response to Escherichia coli can be measured by using differential pulse voltammetric in the presence of α-naphthyl phosphate. The plot of peak current vs. the logarithm of concentration in the range from 2.7×10² to 2.7×108 CFU·mL⁻¹ displayed a linear relationship with a detection limit of 50 CFU·mL⁻¹. The relative standard deviation of 3 successive scans was 2.5%,2.1%,4.6% for 2×10²ï¼Œ2×104,2×106:6 CFU·mL⁻¹ E. coli, respectively. The proposed procedure showed better specificity to E. coli in comparison to Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis. In the detection of the real extractum glycyrrhizae, the results between the proposed strategy and the GB assay showed high degree of agreement, demonstrating the designed biosensor could be utilized as a powerful tool for microbial examination for traditional Chinese medicine.


Assuntos
Técnicas Biossensoriais , Medicamentos de Ervas Chinesas/análise , Escherichia coli/isolamento & purificação , Glycyrrhiza/microbiologia , Extratos Vegetais/análise , DNA , Contaminação de Medicamentos , Ouro
11.
Plant Physiol Biochem ; 206: 108227, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043254

RESUMO

For fleshy fruits, the content and ratio of organic acids and soluble sugars are key factors for their flavor. Therefore, a better understanding of soluble sugar and organic acid accumulation in vacuoles is essential to the improvement of fruit quality. Vacuolar-type inorganic pyrophosphatase (V-PPase) has been found in various plants with crucial functions based on the hydrolysis of PPi. However, the effects of V-PPase on the soluble sugar and organic acid accumulation in apple fruit remain unclear. In this study, MdVHP1-2, a V-PPase protein in the vacuolar membrane, was identified. The results showed a positive correlation between the expression of MdVHP1-2 and the sugar/acid ratio during ripening of apple fruits. A series of transgenic analyses showed that overexpression of MdVHP1-2 significantly elevated the contents of soluble sugars and organic acids as well as the sugar/acid ratio in apple fruits and calli. Additionally, transient interference induced by MdVHP1-2 expression inhibited the accumulation of soluble sugars and organic acids in apple fruits. In summary, this study provides insight into the mechanisms by which MdVHP1-2 modulates fruit flavor through mediation of soluble sugar and organic acid accumulation, thereby facilitating improvement of the overall quality of apple and other fruits.


Assuntos
Frutas , Malus , Frutas/genética , Malus/genética , Açúcares , Carboidratos
12.
aBIOTECH ; 4(4): 303-314, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38106434

RESUMO

As the main organic acid in fruits, malate is produced in the cytoplasm and is then transported into the vacuole. It accumulates by vacuolar proton pumps, transporters, and channels, affecting the taste and flavor of fruits. Among the three types of proton pumps (V-ATPases, V-PPases, and P-ATPases), the P-ATPases play an important role in the transport of malate into vacuoles. In this study, the transcriptome data, collected at different stages after blooming and during storage, were analyzed and the results demonstrated that the expression of MdPH5, a vacuolar proton-pumping P-ATPase, was associated with both pre- and post-harvest malate contents. Moreover, MdPH5 is localized at the tonoplast and regulates malate accumulation and vacuolar pH. In addition, MdMYB73, an upstream MYB transcription factor of MdPH5, directly binds to its promoter, thereby transcriptionally activating its expression and enhancing its activity. In this way, MdMYB73 can also affect malate accumulation and vacuolar pH. Overall, this study clarifies how MdMYB73 and MdPH5 act to regulate vacuolar malate transport systems, thereby affecting malate accumulation and vacuolar pH. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00115-7.

13.
Neurobiol Aging ; 115: 70-76, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35489321

RESUMO

Presenilin 1 (PSEN1) mutations are a major cause of familial Alzheimer's disease. The pathogenic variant, PSEN1 p.G417S, has been reported to be associated with spastic paraparesis and cotton wool plaques in Japan. Here, we report a 3 generation Chinese pedigree that included 10 patients presenting with early-onset and rapid progression of parkinsonism with cognitive impairment in their third or fourth decade of life. Three additional living patients developed different degrees of cognitive impairment, without movement disorders. Magnetic resonance imaging of the brain showed white matter hyperintensities, multiple microbleeds, and enlarged perivascular spaces. Whole exome sequencing analysis of the proband detected the mutation, p.G417S, in PSEN1, which was completely co-segregated with the disease phenotype within the family by Sanger sequencing. 3D protein structures predicted that the mutation might influence contact with the lipid membrane and the interaction with beta-catenin. Our study provides insights into the heterogeneity in clinical presentation and imaging associated with mutations in PSEN1.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Transtornos Parkinsonianos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , China , Disfunção Cognitiva/genética , Humanos , Mutação/genética , Transtornos Parkinsonianos/complicações , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/genética , Linhagem , Presenilina-1/genética
14.
Neurobiol Aging ; 110: 106-112, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34635350

RESUMO

NUS1 has been recently identified as a candidate gene for Parkinson's disease (PD). Few studies have examined the association of NUS1 variants with PD susceptibility and phenotypes. In the first cohort, whole-exome sequencing was performed to identify variants in NUS1 exon-coding and exon-intron regions in 1542 cases and 1625 controls. 13 variants were totally detected, of which 10 rare variants and 3 low-frequency variants. Burden analysis showed that rare NUS1 variants significantly enriched in PD (p=0.016). We also performed a meta-analysis based on previous and our studies to correlate NUS1 mutations with PD susceptibility. Integrating our previous cohort (3210 cases and 2807 controls) and the first cohort identified the significant association of rs539668656 with PD risk (odds ratio (OR) = 2.82, p = 0.016). The genotype-phenotype association analysis showed that patients carrying rare variants, or rs539668656 were significantly associated with earlier onset age, depression, emotional impairment and severe disease condition. Our results support the role of NUS1 rare variants and rs539668656 towards PD susceptibility and phenotype.


Assuntos
Frequência do Gene/genética , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Mutação/genética , Doença de Parkinson/genética , Fenótipo , Receptores de Superfície Celular/genética , Idade de Início , Estudos de Coortes , Éxons/genética , Feminino , Humanos , Íntrons/genética , Masculino , Doença de Parkinson/psicologia , Gravidade do Paciente , Risco , Sequenciamento do Exoma
15.
Neurobiol Aging ; 109: 269-272, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34531044

RESUMO

Recent studies have suggested ARSA, a gene responsible for metachromatic leukodystrophy, could be a genetic modifier of Parkinson's disease (PD) pathogenesis, acting as a molecular chaperone for α-synuclein. To elucidate the role of ARSA variants in PD, we did a comprehensive analysis of ARSA variants by performing next-generation sequencing on 477 PD families, 1440 sporadic early-onset PD patients and 1962 sporadic late-onset PD patients and 2636 controls from Chinese mainland, as well as the association between ARSA variants and cognitive function of PD patients. We identified 2 familial PD following autosomal dominant inherence carrying rare variants of ARSA, but they had limited clinical significance. We detected a total of 81 coding variants of ARSA in our subjects but none of the identified variants were associated with either susceptibility or cognitive performance of PD, while loss-of-function variants showed slightly increased burden in late-onset PD (0.25% vs. 0%, p = 0.08). Our results suggested ARSA may not play important roles in PD of Chinese population.


Assuntos
Cerebrosídeo Sulfatase/genética , Estudos de Associação Genética/métodos , Predisposição Genética para Doença/genética , Variação Genética/genética , Resultados Negativos , Doença de Parkinson/genética , Povo Asiático/genética , Cerebrosídeo Sulfatase/fisiologia , Feminino , Humanos , Mutação com Perda de Função/genética , Masculino , alfa-Sinucleína
16.
Plant Signal Behav ; 16(12): 1987767, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34686106

RESUMO

Anthocyanins, a flavonoid group of polyphenolic compounds, have evolved in plants since the land was colonized by plants. These bioactive compounds play critical roles in diverse physiological processes. They are synthesized in the cytosol and transported into the vacuole for storage or to other destinations, where they function as bioactive molecules. The mechanisms of anthocyanin synthesis and transport have been well studied. However, the precise regulation of the mechanisms of anthocyanin degradation remains to be elucidated. In this review, we highlight recent progress in the understanding of the characteristics and functions of anthocyanins and class III peroxidases, as well as of the existing evidence of the effects of class III peroxidases on the degradation of anthocyanins and the possible regulatory mechanisms involved.


Assuntos
Antocianinas , Plantas , Antocianinas/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Vacúolos/metabolismo
17.
Hortic Res ; 8(1): 227, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697291

RESUMO

In fleshy fruits, organic acids are the main source of fruit acidity and play an important role in regulating osmotic pressure, pH homeostasis, stress resistance, and fruit quality. The transport of organic acids from the cytosol to the vacuole and their storage are complex processes. A large number of transporters carry organic acids from the cytosol to the vacuole with the assistance of various proton pumps and enzymes. However, much remains to be explored regarding the vacuolar transport mechanism of organic acids as well as the substances involved and their association. In this review, recent advances in the vacuolar transport mechanism of organic acids in plants are summarized from the perspectives of transporters, channels, proton pumps, and upstream regulators to better understand the complex regulatory networks involved in fruit acid formation.

18.
Genes (Basel) ; 12(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34828339

RESUMO

Anthocyanins have essential biological functions, affecting the development of horticultural production. They are synthesized in the cytoplasm through flavonoid metabolic pathways and finally transported into vacuoles for storage. Plant glutathione S-transferases (GSTs) are multifunctional enzymes involved in anthocyanin transportation. In this study, we identified 38 GSTs from the apple (Malus domestica) genome (HFTH1 Whole Genome v1.0) based on the sequence similarity with the GST family proteins of Arabidopsis. These MdGST genes could be grouped into nine chief subclasses: U, F, L, Z, T, GHR, EF1Bγ, TCHQD, and DHAR. The structures, motifs, three-dimensional models, and chromosomal distribution of MdGST genes were further analyzed. Elements which are responsive for some hormones and stress, and others that involve genes related to flavonoid biosynthesis were forecast in the promoter of MdGST. In addition, we identified 32 orthologous gene pairs between apple and Arabidopsis. These genes indicated that numerous apple and Arabidopsis counterparts appeared to be derived from a common ancestor. Amongst the 38 MdGST genes, MdGSTU12 was considerably correlated with anthocyanin variation in terms of extracting expression profiles from reported. Finally, further functional identification in apple transgenic calli and subcellular localization confirmed that MdGSTU12 was of great significance in anthocyanin accumulation in apple.


Assuntos
Antocianinas/biossíntese , Antocianinas/genética , Glutationa Transferase/química , Glutationa Transferase/genética , Malus/química , Malus/genética , Motivos de Aminoácidos , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Modelos Moleculares , Filogenia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética
19.
J Agric Food Chem ; 69(1): 447-458, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33347291

RESUMO

MYB transcription factors (TFs) participate in many biological processes. However, the molecular mechanisms by which MYB TFs affect plant resistance to apple ring rot remain poorly understood. Here, the R2R3-MYB gene MdMYB73 was cloned from "Royal Gala" apples and functionally characterized as a positive regulator of the defense response to Botryosphaeria dothidea. qRT-PCR and GUS staining demonstrated that MdMYB73 was strongly induced in apple fruits and transgenic calli after inoculation with B. dothidea. MdMYB73 overexpression improved resistance to B. dothidea in apple calli and fruits, while MdMYB73 suppression weakened. Increased resistance to B. dothidea was also observed in MdMYB73-expressing Arabidopsis thaliana. Interestingly, salicylic acid (SA) contents and the expression levels of genes related with SA synthesis and signaling were greater in MdMYB73-overexpressing plant materials compared to wild-type controls after inoculation, suggesting that MdMYB73 might enhance resistance to B. dothidea via the SA pathway. Finally, we discovered that MdMYB73 interacts with MdWRKY31, a positive regulator of B. dothidea. Together, MdWRKY31 and MdMYB73 enhanced B. dothidea resistance in apples. Our results clarify the mechanisms by which MdMYB73 improves resistance to B. dothidea and suggest that resistance may be affected by regulating the SA pathway.


Assuntos
Ascomicetos/fisiologia , Malus/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/imunologia , Ácido Salicílico/imunologia , Fatores de Transcrição/imunologia , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética
20.
Parkinsonism Relat Disord ; 84: 29-34, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33548880

RESUMO

INTRODUCTION: A recent study reported that rare variants in NUS1 were associated with Parkinson's disease (PD). We aimed to assess the relative contribution of rare and common coding/non-coding variants of NUS1 to late-onset PD patients (LOPD). METHODS: Whole genome sequencing data were analyzed for target NUS1 regions, derived from a cohort of 1962 cases and 1279 controls. The genetic association analyses were performed using logistic regression analysis and Sequence Kernel association test. Expression quantitative trait loci (eQTL) analysis was conducted to further explore the association of variants with NUS1 expression based on the data from GTEx database. RESULTS: We identified 18 rare coding variants. p.Y131C was first identified in LOPD. However, no significant burden of rare NUS1 coding variants in LOPD was found. The rare variant sets of two regulatory elements (GH06J117605 and GH06J117674) were significantly enriched in LOPD even after Bonferroni correction (adjusted P = 0.013; adjusted P = 0.010). Considering the joint effect of rare and common variants, all variant sets within GH06J117605 and GH06J117674 showed association with LOPD but were no longer significant after Bonferroni correction. None of the common variants within coding/non-coding regions were significant after Bonferroni correction. The eQTL results suggested these variants in GH06J117605 and GH06J117674 could potentially have eQTL effects on the brain tissues. CONCLUSIONS: These findings provide novel insight into the role of NUS1 regulatory regions in the development of LOPD and indicate that the variants in regulatory elements of NUS1 may be associated with LOPD by influencing the gene expression level.


Assuntos
Doença de Parkinson/genética , Receptores de Superfície Celular/genética , Idade de Início , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Locos de Características Quantitativas , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa