Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cytometry A ; 99(5): 496-502, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32869909

RESUMO

Collection of a blood sample defined by the term "blood liquid biopsy" is commonly used to detect diagnostic, prognostic, and therapeutic decision-making markers of metastatic tumors including circulating tumor cells (CTCs). Many tumors also release CTCs and other markers into lymph fluid, but the utility of lymphatic markers largely remains unexplored. Here, we introduce lymph liquid biopsy through collection of peripheral (afferent) and central (thoracic duct [TD]) lymph samples and demonstrates its feasibility for detection of stem-like CTCs potentially responsible for metastasis development and tumor relapse. Stemness of lymphatic CTCs (L-CTCs) was determined by spheroid-forming assay in vitro. Simultaneously, we tested blood CTCs by conventional blood liquid biopsy, and monitored the primary tumor size, early metastasis in a sentinel lymph node (SLN) and distant metastasis in lungs. Using a mouse model at early melanoma stage with no distant metastasis, we identified stem-like L-CTCs in lymph samples from afferent lymphatic vessels. Since these vessels transport cells from the primary tumor to SLN, our finding emphasizes the significance of the lymphatic pathway in development of SLN metastasis. Surprisingly, in pre-metastatic disease, stem-like L-CTCs were detected in lymph samples from the TD, which directly empties lymph into blood circulation. This suggests a new contribution of the lymphatic system to initiation of distant metastasis. Integration of lymph and blood liquid biopsies demonstrated that all mice with early melanoma had stem-like CTCs in at least one of three samples (afferent lymph, TD lymph, and blood). At the stage of distant metastasis, spheroid-forming L-CTCs were detected in TD lymph, but not in afferent lymph. Altogether, our results demonstrated that lymph liquid biopsy and testing L-CTCs holds promise for diagnosis and prognosis of early metastasis. © 2020 International Society for Advancement of Cytometry.


Assuntos
Células Neoplásicas Circulantes , Biópsia de Linfonodo Sentinela , Humanos , Biópsia Líquida , Linfonodos , Metástase Linfática , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas
2.
Cytometry A ; 97(7): 706-712, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31769208

RESUMO

Bloodstream infections, especially those that are antibiotic resistant, pose a significant challenge to health care leading to increased hospitalization time and patient mortality. There are different facets to this problem that make these diseases difficult to treat, such as the difficulty to detect bacteria in the blood and the poorly understood mechanism of bacterial invasion into and out of the circulatory system. However, little progress has been made in developing techniques to study bacteria dynamics in the bloodstream. Here, we present a new approach using an in vivo flow cytometry platform for real-time, noninvasive, label-free, and quantitative monitoring of the lifespan of green fluorescent protein-expressing Staphylococcus aureus and Pseudomonas aeruginosa in a murine model. We report a relatively fast average rate of clearance for S. aureus (k = 0.37 ± 0.09 min-1 , half-life ~1.9 min) and a slower rate for P. aeruginosa (k = 0.07 ± 0.02 min-1 , half-life ~9.6 min). We also observed what appears to be two stages of clearance for S. aureus, while P. aeruginosa appeared only to have a single stage of clearance. Our results demonstrate that an advanced research tool can be used for studying the dynamics of bacteria cells directly in the bloodstream, providing insight into the progression of infectious diseases in circulation. © 2019 International Society for Advancement of Cytometry.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Antibacterianos , Modelos Animais de Doenças , Humanos , Camundongos , Pseudomonas aeruginosa
3.
J Pharmacol Exp Ther ; 371(2): 278-289, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31439806

RESUMO

Doxorubicin is a risk factor for secondary lymphedema in cancer patients exposed to surgery or radiation. The risk is presumed to relate to its cytotoxicity. However, the present study provides initial evidence that doxorubicin directly inhibits lymph flow and this action appears distinct from its cytotoxic activity. We used real-time edge detection to track diameter changes in isolated rat mesenteric lymph vessels. Doxorubicin (0.5-20 µmol/l) progressively constricted lymph vessels and inhibited rhythmic contractions, reducing flow to 24.2% ± 7.7% of baseline. The inhibition of rhythmic contractions by doxorubicin paralleled a tonic rise in cytosolic Ca2+ concentration in lymphatic muscle cells, which was prevented by pharmacological antagonism of ryanodine receptors. Washout of doxorubicin partially restored lymph vessel contractions, implying a pharmacological effect. Subsequently, high-speed optical imaging was used to assess the effect of doxorubicin on rat mesenteric lymph flow in vivo. Superfusion of doxorubicin (0.05-10 µmol/l) maximally reduced volumetric lymph flow to 34% ± 11.6% of baseline. Likewise, doxorubicin (10 mg/kg) administered intravenously to establish clinically achievable plasma concentrations also maximally reduced volumetric lymph flow to 40.3% ± 6.0% of initial values. Our findings reveal that doxorubicin at plasma concentrations achieved during chemotherapy opens ryanodine receptors to induce "calcium leak" from the sarcoplasmic reticulum in lymphatic muscle cells and reduces lymph flow, an event linked to lymph vessel damage and the development of lymphedema. These results infer that pharmacological block of ryanodine receptors in lymphatic smooth muscle cells may mitigate secondary lymphedema in cancer patients subjected to doxorubicin chemotherapy. SIGNIFICANCE STATEMENT: Doxorubicin directly inhibits the rhythmic contractions of collecting lymph vessels and reduces lymph flow as a possible mechanism of secondary lymphedema, which is associated with the administration of anthracycline-based chemotherapy. The inhibitory effects of doxorubicin on rhythmic contractions and flow in isolated lymph vessels were prevented by pharmacological block of ryanodine receptors, thereby identifying the ryanodine receptor family of proteins as potential therapeutic targets for the development of new antilymphedema medications.


Assuntos
Doxorrubicina/farmacologia , Linfa/metabolismo , Vasos Linfáticos/metabolismo , Células Musculares/metabolismo , Contração Muscular/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Relação Dose-Resposta a Droga , Linfa/efeitos dos fármacos , Vasos Linfáticos/efeitos dos fármacos , Masculino , Células Musculares/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
4.
Cytometry A ; 95(6): 664-671, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30508273

RESUMO

Most cancer patients die from metastatic disease as a result of a circulating tumor cell (CTC) spreading from a primary tumor through the blood circulation to distant organs. Many studies have demonstrated the tremendous potential of using CTC counts as prognostic markers of metastatic development and therapeutic efficacy. However, it is only the viable CTCs capable of surviving in the blood circulation that can create distant metastasis. To date, little progress has been made in understanding what proportion of CTCs is viable and what proportion is in an apoptotic state. Here, we introduce a novel approach toward in situ characterization of CTC apoptosis status using a multicolor in vivo flow cytometry platform with fluorescent detection for the real-time identification and enumeration of such cells directly in blood flow. The proof of concept was demonstrated with two-color fluorescence flow cytometry (FFC) using breast cancer cells MDA-MB-231 expressing green fluorescein protein (GFP), staurosporine as an activator of apoptosis, Annexin-V apoptotic kit with orange dye color, and a mouse model. The future application of this new platform for real-time monitoring of antitumor drug efficiency is discussed. © 2018 International Society for Advancement of Cytometry.


Assuntos
Apoptose , Vasos Sanguíneos/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Citometria de Fluxo/métodos , Células Neoplásicas Circulantes/química , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/sangue , Vasos Sanguíneos/efeitos dos fármacos , Contagem de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Nus , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/efeitos da radiação , Estaurosporina/toxicidade
5.
Int J Hyperthermia ; 34(1): 19-29, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28540812

RESUMO

PURPOSE: To demonstrate delivery of Au nanocages to cells using the galectin-1 binding peptide anginex (Ax) and to demonstrate the value of this targeting for selective in vitro photothermal cell killing. MATERIALS AND METHODS: Au nanocages were synthesised, coated with polydopamine (PDA), and conjugated with Ax. Tumour and endothelial cell viability was measured with and without laser irradiation. Photoacoustic (PA) mapping and PA flow cytometry were used to confirm cell targeting in vitro and in tissue slices ex vivo. RESULTS: Cell viability was maintained at ≥50% at 100 pM suggesting low toxicity of the nanocage alone. Combining the targeted construct (25 pM) with low power 808 nm laser irradiation for 10-20 min (a duration previously shown to induce rapid and sustained heating of Au nanocages [AuNC] in solution), resulted in over 50% killing of endothelial and tumour cells. In contrast, the untargeted construct combined with laser irradiation resulted in negligible cell killing. We estimate approximately 6 × 104 peptides were conjugated to each nanocage, which also resulted in inhibition of cell migration. Binding of the targeted nanocage reached a plateau after three hours, and cell association was 20-fold higher than non-targeted nanocages both in vitro and ex vivo on tumour tissue slices. A threefold increase in tumour accumulation was observed in preliminary in vivo studies. CONCLUSIONS: These studies demonstrate Ax's potential as an effective targeting agent for Au-based theranostics to tumour and endothelial cells, enabling photothermal killing. This platform further suggests potential for multimodal in vivo therapy via next-generation drug-loaded nanocages.


Assuntos
Galectina 1/metabolismo , Ouro/metabolismo , Nanoestruturas/química , Fototerapia/métodos , Animais , Camundongos , Camundongos Endogâmicos BALB C
6.
Int J Hyperthermia ; 34(2): 209-219, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29025325

RESUMO

BACKGROUND: We previously demonstrated that a photoactivatable therapeutic approach employing antibiotic-loaded, antibody-conjugated, polydopamine (PDA)-coated gold nanocages (AuNCs) could be used for the synergistic killing of bacterial cells within a biofilm. The approach was validated with a focus on Staphylococcus aureus using an antibody specific for staphylococcal protein A (Spa) and an antibiotic (daptomycin) active against Gram-positive cocci including methicillin-resistant S. aureus (MRSA). However, an important aspect of this approach is its potential therapeutic versatility. METHODS: In this report, we evaluated this versatility by examining the efficacy of AuNC formulations generated with alternative antibodies and antibiotics targeting S. aureus and alternative combinations targeting the Gram-negative pathogen Pseudomonas aeruginosa. RESULTS: The results confirmed that daptomycin-loaded AuNCs conjugated to antibodies targeting two different S. aureus lipoproteins (SACOL0486 and SACOL0688) also effectively kill MRSA in the context of a biofilm. However, our results also demonstrate that antibiotic choice is critical. Specifically, ceftaroline and vancomycin-loaded AuNCs conjugated to anti-Spa antibodies were found to exhibit reduced efficacy relative to daptomycin-loaded AuNCs conjugated to the same antibody. In contrast, gentamicin-loaded AuNCs conjugated to an antibody targeting a conserved outer membrane protein were highly effective against P. aeruginosa biofilms. CONCLUSIONS: These results confirm the therapeutic versatility of our approach. However, to the extent that its synergistic efficacy is dependent on the ability to achieve both a lethal photothermal effect and the thermally controlled release of a sufficient amount of antibiotic, they also demonstrate the importance of carefully designing appropriate antibody and antibiotic combinations to achieve the desired therapeutic synergy.


Assuntos
Antibacterianos/uso terapêutico , Infecções Bacterianas/terapia , Ouro/metabolismo , Nanopartículas/metabolismo , Antibacterianos/farmacologia , Infecções Bacterianas/patologia , Biofilmes , Humanos
7.
Drug Metab Rev ; 49(2): 212-252, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28264609

RESUMO

Optical techniques, including Raman, photothermal and photoacoustic microscopy and spectroscopy, have been intensively explored for the sensitive and accurate detection of various diseases. Rapid advances in lasers, photodetectors, and nanotechnology have led to the development of Raman spectroscopy, particularly surface-enhanced Raman scattering (SERS), as a promising imaging modality that can help diagnose many diseases. This review focuses on the major recent advances in Raman spectroscopy and SERS-enhancing contrast nanoagents, as well as their potential to transition from a proof-of-concept approach to a cancer detection tool in vitro and in vivo.


Assuntos
Nanopartículas , Nanotubos de Carbono , Neoplasias/diagnóstico , Análise Espectral Raman/métodos , Animais , Humanos , Ressonância de Plasmônio de Superfície/métodos
8.
J Appl Toxicol ; 37(11): 1297-1304, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28524252

RESUMO

Graphene-based nanomaterials (GBNs) are quickly revolutionizing modern electronics, energy generation and storage, clothing and biomedical devices. Due to GBN's variety of physical and chemical parameters that define their toxicity and their aggregation in suspension, interpreting its toxicology without accurate information on graphene's distribution and behavior in live organisms is challenging. In this work, we present a laser-based optical detection methodology for noninvasive detection and pharmacokinetics analysis of GBNs directly in blood flow in mice using in vivo photoacoustic (PA) flow cytometry (PAFC). PAFC provides unique insight on how chemical modifications of GBNs affect their distribution in blood circulation and how quickly they are eliminated from the flow. Overall, PAFC provided unique data crucial for understanding GBN toxicity through real-time detection of GBNs using their intrinsic light absorption contrast. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Citometria de Fluxo/métodos , Grafite/farmacocinética , Nanopartículas , Técnicas Fotoacústicas , Animais , Feminino , Grafite/administração & dosagem , Grafite/sangue , Grafite/química , Interações Hidrofóbicas e Hidrofílicas , Injeções Intravenosas , Camundongos Nus , Reprodutibilidade dos Testes
9.
J Appl Toxicol ; 37(12): 1370-1378, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28730725

RESUMO

Multifunctional nanoparticles have high potential as targeting delivery vehicles for cancer chemotherapy. In this study, silver-decorated gold nanorods (AuNR\Ag) have been successfully used to deliver specific, targeted chemotherapy against breast cancer (MCF7) and prostate carcinoma (PC3) cell lines. Doxorubicin, a commonly used chemotherapy, and anti-Epithelial cell adhesion molecule (anti-EpCAM) antibodies were covalently bonded to thiolated polyethylene glycol-coated AuNR\Ag, and the resultant system was used to deliver the drugs to cancer cells in vitro. Furthermore, these nanoparticles have a unique spectral signature by surface enhanced Raman spectroscopy (SERS), which enables reliable detection and monitoring of the distribution of these chemotherapy constructs inside cells. The development of interest in a plasmonic nano drugs system with unique spectroscopic signatures could result in a clinical approach to the precise targeting and visualization of cells and solid tumors while delivering molecules for the enhanced treatment of cancerous tumors.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Ouro/química , Nanotubos/química , Prata/química , Anticorpos Monoclonais/administração & dosagem , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Doxorrubicina/farmacologia , Molécula de Adesão da Célula Epitelial/imunologia , Humanos , Terapia de Alvo Molecular , Análise Espectral Raman
10.
Cytometry A ; 89(6): 531-42, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27078044

RESUMO

In vivo photoacoustic (PA) flow cytometry (PAFC) has already demonstrated a great potential for the diagnosis of deadly diseases through ultrasensitive detection of rare disease-associated circulating markers in whole blood volume. Here, we demonstrate the first application of this powerful technique for early diagnosis of malaria through label-free detection of malaria parasite-produced hemozoin in infected red blood cells (iRBCs) as high-contrast PA agent. The existing malaria tests using blood smears can detect the disease at 0.001-0.1% of parasitemia. On the contrary, linear PAFC showed a potential for noninvasive malaria diagnosis at an extremely low level of parasitemia of 0.0000001%, which is ∼10(3) times better than the existing tests. Multicolor time-of-flight PAFC with high-pulse repetition rate lasers at wavelengths of 532, 671, and 820 nm demonstrated rapid spectral and spatial identification and quantitative enumeration of individual iRBCs. Integration of PAFC with fluorescence flow cytometry (FFC) provided real-time simultaneous detection of single iRBCs and parasites expressing green fluorescence proteins, respectively. A combination of linear and nonlinear nanobubble-based multicolor PAFC showed capability to real-time control therapy efficiency by counting of iRBCs before, during, and after treatment. Our results suggest that high-sensitivity, high-resolution ultrafast PAFC-FFC platform represents a powerful research tool to provide the insight on malaria progression through dynamic study of parasite-cell interactions directly in bloodstream, whereas portable hand-worn PAFC device could be broadly used in humans for early malaria diagnosis. © 2016 International Society for Advancement of Cytometry.


Assuntos
Eritrócitos/parasitologia , Citometria de Fluxo/métodos , Hemeproteínas/análise , Malária/diagnóstico , Parasitemia/diagnóstico , Técnicas Fotoacústicas/instrumentação , Plasmodium yoelii/crescimento & desenvolvimento , Animais , Computadores de Mão , Orelha/irrigação sanguínea , Orelha/parasitologia , Diagnóstico Precoce , Citometria de Fluxo/instrumentação , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hemeproteínas/biossíntese , Hemeproteínas/química , Interações Hospedeiro-Parasita , Lasers , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Parasitemia/parasitologia , Técnicas Fotoacústicas/métodos , Plasmodium yoelii/patogenicidade , Esquizontes/química , Esquizontes/fisiologia
11.
Drug Metab Rev ; 47(3): 346-55, 2015 08.
Artigo em Inglês | MEDLINE | ID: mdl-26133539

RESUMO

Growing biomedical applications of non-fluorescent nanoparticles (NPs) for molecular imaging, disease diagnosis, drug delivery, and theranostics require new tools for real-time detection of nanomaterials, drug nano-carriers, and NP-drug conjugates (nanodrugs) in complex biological environments without additional labeling. Photothermal (PT) microscopy (PTM) has enormous potential for absorption-based identification and quantification of non-fluorescent molecules and NPs at a single molecule and 1.4 nm gold NP level. Recently, we have developed confocal PTM providing three-dimensional (3D) mapping and spectral identification of multiple chromophores and fluorophores in live cells. Here, we summarize recent advances in the application of confocal multicolor PTM for 3D visualization of single and clustered NPs, alone and in individual cells. In particular, we demonstrate identification of functionalized magnetic and gold-silver NPs, as well as graphene and carbon nanotubes in cancer cells and among blood cells. The potential to use PTM for super-resolution imaging (down to 50 nm), real-time NP tracking, guidance of PT nanotherapy, and multiplex cancer markers targeting, as well as analysis of non-linear PT phenomena and amplification of nanodrug efficacy through NP clustering and nano-bubble formation are also discussed.


Assuntos
Portadores de Fármacos , Microscopia Confocal/métodos , Nanopartículas , Nanotecnologia/métodos , Preparações Farmacêuticas/metabolismo , Animais , Transporte Biológico , Composição de Medicamentos , Corantes Fluorescentes/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Preparações Farmacêuticas/química , Fluxo de Trabalho
12.
Small ; 10(1): 135-42, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23864531

RESUMO

Super-resolution fluorescence microscopy enables imaging of fluorescent structures beyond the diffraction limit. However, this technique cannot be applied to weakly fluorescent cellular components or labels. As an alternative, photothermal microscopy based on nonradiative transformation of absorbed energy into heat has demonstrated imaging of nonfluorescent structures including single molecules and ~1-nm gold nanoparticles. However, previously photothermal imaging has been performed with a diffraction-limited resolution only. Herein, super-resolution, far-field photothermal microscopy based on nonlinear signal dependence on the laser energy is introduced. Among various nonlinear phenomena, including absorption saturation, multiphoton absorption, and signal temperature dependence, signal amplification by laser-induced nanobubbles around overheated nano-objects is explored. A Gaussian laser beam profile is used to demonstrate the image spatial sharpening for calibrated 260-nm metal strips, resolving of a plasmonic nanoassembly, visualization of 10-nm gold nanoparticles in graphene, and hemoglobin nanoclusters in live erythrocytes with resolution down to 50 nm. These nonlinear phenomena can be used for 3D imaging with improved lateral and axial resolution in most photothermal methods, including photoacoustic microscopy.

14.
Proc Natl Acad Sci U S A ; 108(3): 1028-33, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21189303

RESUMO

Understanding the nature of interactions between engineered nanomaterials and plants is crucial in comprehending the impact of nanotechnology on the environment and agriculture with a focus on toxicity concerns, plant disease treatment, and genetic engineering. To date, little progress has been made in studying nanoparticle-plant interactions at single nanoparticle and genetic levels. Here, we introduce an advanced platform integrating genetic, Raman, photothermal, and photoacoustic methods. Using this approach, we discovered that multiwall carbon nanotubes induce previously unknown changes in gene expression in tomato leaves and roots, particularly, up-regulation of the stress-related genes, including those induced by pathogens and the water-channel LeAqp2 gene. A nano-bubble amplified photothermal/photoacoustic imaging, spectroscopy, and burning technique demonstrated the detection of multiwall carbon nanotubes in roots, leaves, and fruits down to the single nanoparticle and cell level. Thus, our integrated platform allows the study of nanoparticles' impact on plants with higher sensitivity and specificity, compared to existing assays.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Aquaporina 2/metabolismo , Citometria de Varredura a Laser , Lasers , Análise em Microsséries , Reação em Cadeia da Polimerase , Análise Espectral/métodos
15.
Mol Pharm ; 10(3): 813-30, 2013 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-23379366

RESUMO

Many life-threatening diseases are disseminated through biological fluids, such as blood, lymph, and cerebrospinal fluid. The migration of tumor cells through the vascular circulation is a mandatory step in metastasis, which is responsible for ∼90% of cancer-associated mortality. Circulating pathogenic bacteria, viruses, or blood clots lead to other serious conditions including bacteremia, sepsis, viremia, infarction, and stroke. Therefore, technologies capable of detecting circulating tumor cells (CTCs), circulating bacterial cells (CBCs), circulating endothelial cells (CECs), circulating blood clots, cancer biomarkers such as microparticles and exosomes, which contain important microRNA signatures, and other abnormal features such as malaria parasites in biological fluids may facilitate early diagnosis and treatment of metastatic cancers, infections, and adverse cardiovascular events. Unfortunately, even in a disease setting, circulating abnormal cells are rare events that are easily obscured by the overwhelming background material in whole blood. Existing detection methods mostly rely on ex vivo analyses of limited volumes (a few milliliters) of blood samples. These small volumes limit the probability of detecting CTCs, CECs, CBCs and other rare phenomena. In vivo detection platforms capable of continuously monitoring the entire blood volume may substantially increase the probability of detecting circulating abnormal cells and, in particular, increase the opportunity to identify exceedingly rare and potentially dangerous subsets of these cells, such as circulating cancer stem cells (CCSCs). In addition, in vivo detection technologies capable of destroying and/or capturing circulating abnormal cells may inhibit disease progression. This review focuses on novel therapeutic and diagnostic (theranostic) platforms integrating in vivo real-time early diagnosis and nano-bubble based targeted therapy of CTCs, CECs, CBCs and other abnormal objects in circulation. This critical review particularly focuses on nanotechnology-based theranostic (nanotheranostic) approaches, especially in vivo photoacoustic (PA) and photothermal (PT) nanotheranostic platforms. We emphasize an urgent need for in vivo platforms composed of multifunctional contrast nanoagents, which utilize diverse modalities to realize a breakthrough for early detection and treatment of harmful diseases disseminated through the circulation.


Assuntos
Imagem Molecular/métodos , Nanotecnologia/métodos , Células Neoplásicas Circulantes/patologia , Humanos , Técnicas Fotoacústicas
16.
Methods ; 57(3): 280-96, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22749928

RESUMO

Conventional flow cytometry using scattering and fluorescent detection methods has been a fundamental tool of biological discoveries for many years. Invasive extraction of cells from a living organism, however, may lead to changes in cell properties and prevents the long-term study of cells in their native environment. Here, we summarize recent advances of new generation flow cytometry for in vivo noninvasive label-free or targeted detection of cells in blood, lymph, bone, cerebral and plant vasculatures using photoacoustic (PA) detection techniques, multispectral high-pulse-repetition-rate lasers, tunable ultrasharp (up to 0.8 nm) rainbow plasmonic nanoprobes, positive and negative PA contrasts, in vivo magnetic enrichment, time-of-flight cell velocity measurement, PA spectral analysis, and integration of PA, photothermal (PT), fluorescent, and Raman methods. Unique applications of this tool are reviewed with a focus on ultrasensitive detection of normal blood cells at different functional states (e.g., apoptotic and necrotic) and rare abnormal cells including circulating tumor cells (CTCs), cancer stem cells, pathogens, clots, sickle cells as well as pharmokinetics of nanoparticles, dyes, microbubbles and drug nanocarriers. Using this tool we discovered that palpation, biopsy, or surgery can enhance CTC release from primary tumors, increasing the risk of metastasis. The novel fluctuation flow cytometry provided the opportunity for the dynamic study of blood rheology including red blood cell aggregation and clot formation in different medical conditions (e.g., blood disorders, cancer, or surgery). Theranostics, as a combination of PA diagnosis and PT nanobubble-amplified multiplex therapy, was used for eradication of CTCs, purging of infected blood, and thrombolysis of clots using PA guidance to control therapy efficiency. In vivo flow cytometry using a portable fiber-based devices can provide a breakthrough platform for early diagnosis of cancer, infection and cardiovascular disorders with a potential to inhibit, if not prevent, metastasis, sepsis, and strokes or heart attack by well-timed personalized therapy.


Assuntos
Doenças Cardiovasculares/diagnóstico , Citometria de Fluxo/métodos , Imagem Molecular/métodos , Neoplasias/diagnóstico , Técnicas Fotoacústicas , Animais , Células Sanguíneas/patologia , Doenças Cardiovasculares/patologia , Citometria de Fluxo/instrumentação , Humanos , Lasers , Linfa/citologia , Camundongos , Nanopartículas/ultraestrutura , Neoplasias/patologia , Células Neoplásicas Circulantes/patologia , Células-Tronco Neoplásicas/patologia
17.
Biophys J ; 102(3): 672-81, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22325291

RESUMO

Confocal fluorescence microscopy is a powerful biological tool providing high-resolution, three-dimensional (3D) imaging of fluorescent molecules. Many cellular components are weakly fluorescent, however, and thus their imaging requires additional labeling. As an alternative, label-free imaging can be performed by photothermal (PT) microscopy (PTM), based on nonradiative relaxation of absorbed energy into heat. Previously, little progress has been made in PT spectral identification of cellular chromophores at the 3D microscopic scale. Here, we introduce PTM integrating confocal thermal-lens scanning schematic, time-resolved detection, PT spectral identification, and nonlinear nanobubble-induced signal amplification with a tunable pulsed nanosecond laser. The capabilities of this confocal PTM were demonstrated for high-resolution 3D imaging and spectral identification of up to four chromophores and fluorophores in live cells and Caenorhabditis elegans. Examples include cytochrome c, green fluorescent protein, Mito-Tracker Red, Alexa-488, and natural drug-enhanced or genetically engineered melanin as a PT contrast agent. PTM was able to guide spectral burning of strong absorption background, which masked weakly absorbing chromophores (e.g., cytochromes in the melanin background). PTM provided label-free monitoring of stress-related changes to cytochrome c distribution, in C. elegans at the single-cell level. In nonlinear mode ultrasharp PT spectra from cyt c and the lateral resolution of 120 nm during calibration with 10-nm gold film were observed, suggesting a potential of PTM to break through the spectral and diffraction limits, respectively. Confocal PT spectromicroscopy could provide a valuable alternative or supplement to fluorescence microscopy for imaging of nonfluorescent chromophores and certain fluorophores.


Assuntos
Corantes Fluorescentes/metabolismo , Temperatura Alta , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Animais , Caenorhabditis elegans/citologia , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Imageamento Tridimensional , Espaço Intracelular/metabolismo , Melaninas/metabolismo , Estresse Oxidativo
18.
Sci Rep ; 12(1): 8671, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606373

RESUMO

In vivo, Cytophone has demonstrated the capability for the early diagnosis of cancer, infection, and cardiovascular disorders through photoacoustic detection of circulating disease markers directly in the bloodstream with an unprecedented 1,000-fold improvement in sensitivity. Nevertheless, a Cytophone with higher specificity and portability is urgently needed. Here, we introduce a novel Cytophone platform that integrates a miniature multispectral laser diode array, time-color coding, and high-speed time-resolved signal processing. Using two-color (808 nm/915 nm) laser diodes, we demonstrated spectral identification of white and red clots, melanoma cells, and hemozoin in malaria-infected erythrocytes against a blood background and artifacts. Data from a Plasmodium yoelii murine model and cultured human P. falciparum were verified in vitro with confocal photothermal and fluorescent microscopy. With these techniques, we detected infected cells within 4 h after invasion, which makes hemozoin promising as a spectrally selective marker at the earliest stages of malaria progression. Along with the findings from our previous application of Cytophone with conventional lasers for the diagnosis of melanoma, bacteremia, sickle anemia, thrombosis, stroke, and abnormal hemoglobin forms, this current finding suggests the potential for the development of a portable rainbow Cytophone with multispectral laser diodes for the identification of these and other diseases.


Assuntos
Malária , Melanoma , Plasmodium yoelii , Animais , Detecção Precoce de Câncer , Eritrócitos , Lasers Semicondutores , Malária/diagnóstico , Camundongos , Plasmodium falciparum
19.
Cytometry A ; 79(10): 737-45, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21915991

RESUMO

Flow cytometry (FCM) has been a fundamental tool of biological discovery for many years. Invasive extraction of cells from a living organism, however, may lead to changes in cell properties and prevents studying cells in their native environment. These problems can be overcome by use of in vivo FCM, which provides detection and imaging of circulating normal and abnormal cells directly in blood or lymph flow. The goal of this review is to provide a brief history, features, and challenges of this new generation of FCM methods and instruments. Spectrum of possibilities of in vivo FCM in biological science (e.g., cell metabolism, immune function, or apoptosis) and medical fields (e.g., cancer, infection, and cardiovascular disorder) including integrated photoacoustic-photothermal theranostics of circulating abnormal cells are discussed with focus on recent advances of this new platform.


Assuntos
Citometria de Fluxo , Imagem Molecular , Técnicas Fotoacústicas , Coloração e Rotulagem/métodos , Animais , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/patologia , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Fluorescência , Humanos , Lasers , Linfa/citologia , Linfa/diagnóstico por imagem , Imageamento por Ressonância Magnética , Camundongos , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Nanopartículas , Neoplasias/diagnóstico , Neoplasias/patologia , Técnicas Fotoacústicas/instrumentação , Técnicas Fotoacústicas/métodos , Reologia , Processamento de Sinais Assistido por Computador , Análise Espectral Raman , Ultrassonografia
20.
Cytometry A ; 79(10): 746-57, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21948731

RESUMO

Alterations of blood rheology (hemorheology) are important for the early diagnosis, prognosis, and prevention of many diseases, including myocardial infarction, stroke, sickle cell anemia, thromboembolism, trauma, inflammation, and malignancy. However, real-time in vivo assessment of multiple hemorheological parameters over long periods of time has not been reported. Here, we review the capabilities of label-free photoacoustic (PA) and photothermal (PT) flow cytometry for dynamic monitoring of hemorhelogical parameters in vivo which we refer to as photoacoustic and photothermal blood rheology. Using phenomenological models, we analyze correlations between both PT and PA signal characteristics in the dynamic modes and following determinants of blood rheology: red blood cell (RBC) aggregation, deformability, shape (e.g., as in sickle cells), intracellular hemoglobin distribution, individual cell velocity, hematocrit, and likely shear rate. We present ex vivo and in vivo experimental verifications involving high-speed PT imaging of RBCs, identification of sickle cells in a mouse model of human sickle cell disease and in vivo monitoring of complex hemorheological changes (e.g., RBC deformability, hematocrit and RBC aggregation). The multi-parameter platform that integrates PT, PA, and conventional optical techniques has potential for translation to clinical applications using safe, portable, laser-based medical devices for point-of-care screening of disease progression and therapy efficiency.


Assuntos
Anemia Falciforme , Doenças Cardiovasculares/diagnóstico , Citometria de Fluxo , Hemorreologia , Imagem Molecular , Técnicas Fotoacústicas , Anemia Falciforme/diagnóstico , Anemia Falciforme/patologia , Animais , Viscosidade Sanguínea , Doenças Cardiovasculares/patologia , Diagnóstico Precoce , Agregação Eritrocítica , Deformação Eritrocítica , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Fluorescência , Hematócrito , Hemoglobinas , Humanos , Lasers , Camundongos , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Técnicas Fotoacústicas/instrumentação , Técnicas Fotoacústicas/métodos , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa