Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anim Biotechnol ; 35(1): 2298406, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38193808

RESUMO

The Meiren yak is an important genetic resource in Gansu Province, China. In this study, we aimed to explore the evolutionary history and population structure of the genetic resource of Meiren yak and to mine the characteristic genes of Meiren yak. We analysed a total of 93 yaks of eight yak breeds based on whole genome resequencing combined with population genomics and used θπ ratio and Fst method to screen the selected sites in the genome region. The results proved that Meiren yak can be used as a potential genetic resource in Gansu Province. The genes in Meiren yak with positive selection in selection signal analysis were subjected to the Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses, which indicated that the genes were related to the adaptability to high altitude and hypoxic environment. By analysing the genetic variation of Meiren yak at the genome-wide level, this study provided a theoretical basis for genetic improvement of Meiren yak and for the development of high-quality yak resources.


Assuntos
Genoma , Bovinos/genética , Animais , Genoma/genética , Análise de Sequência de DNA , China
2.
Animals (Basel) ; 14(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338049

RESUMO

Jersey-yak is a hybrid offspring of Jersey cattle and yak (Bos grunniens). Changing the feeding system of Jersey-yak can significantly improve its growth performance. In this study, tandem mass tag (TMT) proteomics technology was used to determine the differentially expressed proteins (DEPs) of the longissimus lumborum (LL) muscle of Jersey-yak fed different protein levels of diet. The results showed that compared with the traditional grazing feeding, the growth performance of Jersey-yaks was significantly improved by crude protein supplementation after grazing. A total of 3368 proteins were detected in these muscle samples, of which 3365 were quantified. A total of 434 DEPs were identified. Through analyses, it was found that some pathways related to muscle growth and development were significantly enriched, such as Rap1 signaling pathway, mTOR signaling pathway, and TGF-beta signaling pathway. A number of DEPs enriched in these pathways are related to muscle cell development, differentiation, and muscle development, including integrin subunit alpha 7 (ITGA7), myosin heavy chain 8 (MYH8), and collagen type XII alpha 1 chain (COL12A1). In conclusion, the results of this study provide insights into the proteomics of different feeding patterns of Jersey-yak, providing a stronger basis for further understanding the biological mechanism of hybrid varieties.

3.
Int J Biol Macromol ; 262(Pt 1): 129985, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342263

RESUMO

Cattle-yak, which is the hybrid F1 generation of cattle and yak, demonstrates better production performance compared to yak. However, there is limited research on the molecular mechanisms responsible for the muscle development of cattle-yak. To address this knowledge gap, a comprehensive transcriptomic survey of the longissimus dorsi muscle in cattle-yak was conducted. Three transcript types, namely lncRNAs, miRNAs, and circRNAs, along with protein-coding genes were characterized at two developmental stages (6 m, 18 m) of cattle-yak. The results revealed significant enrichment of these transcripts into pathways related to myoblast differentiation and muscle development signaling. Additionally, the study identified the TCONS00024465/circHIPK3-bta-miR-499-ADAMTS6 regulatory network, which may play a crucial role in the muscle development of cattle-yak by combining the transcriptome data of yak and constructing the ceRNA co-expression network. HEK 293 T cells were used to validate that TCONS00024465 and circHIPK3 are located upstream of bta-miR-499, and can competitively bind to bta-miR-499 as ceRNA. The study also verified that ADAMTS6 regulates skeletal muscle development by inhibiting myoblast proliferation, promoting myoblast differentiation, and positively regulating the apoptosis of myoblasts. Taken together, this study provides new insights into the advantages of cattle-yak production performance and offers a molecular basis for further research on muscle development.


Assuntos
Perfilação da Expressão Gênica , MicroRNAs , Animais , Bovinos , Humanos , Células HEK293 , MicroRNAs/genética , Mioblastos/metabolismo , Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa