RESUMO
Rapid urbanization and mining activities are exacerbating sulfate (SO42-) pollution in surface water, and the information on its sources and transformations is crucial for understanding the sulphur cycle in mining areas. In this study, the SO42- in the surface water of Huaibei mining area were monitored and the main sources of pollution and biogeochemical processes were identified using stable isotopes (δD, δ18O-H2O, δ34S-SO42- and δ18O-SO42-) and water chemistry. The results demonstrated the SO42- content in the Huihe River and Linhuan subsidence water area (SWA) is higher than that in other rivers and SWAs, which exceeded the environmental quality standard of surface water. The SO42- content of different rivers and SWAs showed seasonal differences, and the dry season was higher than the wet season. In addition, the SO42- in Tuohe River and Suihe River is primarily caused by urban sewage and agriculture activities, while in Zhonghu and Shuoxihu SWA is mainly contributed by natural evaporate dissolution. Notably, the input of SO42- in the Huihe River and Linhuan SWA caused by mining activities cannot be disregarded. The aerobic environment and isotopic fractionation of surface water indicate that sulfide oxidation is not the major cause of SO42- formation. This work has revealed the multiple sources and transformation mechanisms of SO42-, and provided a reference for the development of comprehensive management and effective remediation strategies of SO42- contamination in surface water around mining areas.
Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Água , Sulfatos/análise , Isótopos , Mineração , Rios/química , Poluentes Químicos da Água/análise , China , Isótopos de Nitrogênio/análiseRESUMO
In China, fence net aquaculture practices have been established in some subsidence waters that have been formed in coal mining subsidence areas. Within this dynamic ecological context, diverse fish species grow continuously until being harvested at the culmination of their production cycle. The purpose of this study was to investigate diverse factors influencing the bioavailability and distribution of mercury (Hg) and methylmercury (MeHg), which have high physiological toxicity in fish, in the Guqiao coal mining subsidence area in Huainan, China. Mercury and MeHg were analyzed in 38 fish samples of eight species using direct mercury analysis (DMA-80) and gas chromatography-cold vapor atomic fluorescence spectrometry (GC-CVAFAS). The analysis results show that the ranges of Hg and MeHg content and methylation rate in the fish were 7.84-85.18â¯ng/g, 0.52-3.52â¯ng/g, and 0.81-42.68â¯%, respectively. Meanwhile, conclusions are also summarized as following: (1) Monophagous herbivorous fish that were fed continuously in fence net aquaculture areas had higher MeHg levels and mercury methylation rates than carnivorous fish. Hg and MeHg contents were affected by different feeding habits of fish. (2) Bottom-dwelling fish show higher MeHg levels, and habitat selection in terms of water depth also partially affected the MeHg content of fish. (3) The effect of fence net aquaculture on methylation of fish in subsidence water is mainly from feed and mercury-containing bottom sediments. However, a time-lag is observed in the physiological response of benthic fishes to the release of Hg from sediments. Our findings provides baseline reference data for the ecological impact of fence net aquaculture in waters affected by soil subsidence induced by coal mining in China. Prevalent environmental contaminants within coal mining locales, notably Hg, may infiltrate rain-induced subsidence waters through various pathways.
Assuntos
Aquicultura , Minas de Carvão , Monitoramento Ambiental , Peixes , Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Compostos de Metilmercúrio/análise , Animais , Mercúrio/análise , Poluentes Químicos da Água/análise , Peixes/metabolismo , China , Monitoramento Ambiental/métodosRESUMO
Understanding the nitrogen and sulfur uptake strategies of mine plants, including sources and preferences for nitrogen forms (ammonium nitrogen (NH4+) vs nitrate nitrogen (NO3-)), is critical to improving understanding of the role of plants in participating in the biogeochemical cycles of nitrogen and sulfur in mining areas. In this study, the stable N and S isotopic compositions of two species of aquatic plants (calamus and reed) in Linhuan mining area were analyzed to determine their absorption strategies for different nitrogen and sulfur sources. The results showed that river water was the largest source of nitrogen and sulfur, contributing 54.6% and 53.9% respectively. NO3- is the main form of nitrogen uptake by reed and calamus, followed by NH4+. In order to adapt to the change of nitrogen form in the environment, reed and calamus tend to absorb and utilize NO3- to maintain their absorption of nitrogen. Mine effluents from mining activities provide at least 12.9% and 16.8% sulfate to reed and calamus respectively, and the effect of mine effluents on reed and calamus sulfur has been underestimated. This study reveals the key factors controlling plant isotope composition, and the use of nitrogen and sulfur isotope composition of aquatic plants can help quantify the level of influence of mining activities, and understand the biogeochemical cycle of nitrogen and sulfur in mining areas.
Assuntos
Nitrogênio , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/química , Mineração , Nitratos/análise , Enxofre , Isótopos de Nitrogênio/análiseRESUMO
The actual DOM in Chaohu Lake was used to feed cyanobacterial to explore the changes of microbial communities, fluorescence spectral characteristics and molecular composition of DOM during the degradation of cyanobacteria. It is found that cyanobacterial grow periodically depending on the concentration of nutrients with the decreasing concentration of nutrient salts. Both Bacteroidetes and Actinobacteria have strong correlation with algae growth. Bacteroidetes has a positive correlation with algae growth, relationship on the contrary, Actinobacteria has a negative relationship. The humus-like components in the four groups are similar, but the protein-like component (C3) shows periodic changes with the life process of cyanobacteria. The average molecular weight of each sample detected by Orbitrap high-resolution mass spectrometer increases slightly and the DOM increase aromaticity in the end. In this study, the molecule of Carboxyl-Rich Alicyclic Molecules (CRAM) is difficult to be done by photodegradation and biodegradation in the early periods, but some molecules of CRAM are selectively degraded by microorganisms in the final period. The growth of cyanobacterial lead to increasing the concentration of protein-like and carbohydrate-like molecule of DOM in the water. In the final stage, the molecule group of CHO disappear significantly and the molecule group of heteroatomic group increase.
Assuntos
Actinobacteria , Cianobactérias , Matéria Orgânica Dissolvida , Lagos , ChinaRESUMO
The soil contamination caused by the discharge of cadmium (Cd) from coal mining activities has aroused continuous attention due to the detrimental effects on the human health. This study aimed to investigate the characteristics on distribution of Cd in soils and its accumulation in wheat grains under wheat-cultivation system, and further assess the human health risks to adults and children. 58 soils and wheat samples in pairs from Linhuan coal mining area, Anhui Province were collected and analyzed. Results showed that the concentrations of Cd in 17.24% of soil samples exceeded the limit value established by the Ministry of Ecology and Environment. The ordinary kriging interpolation displayed that the spatial variability of Cd concentrations in soils was mainly influenced by coal mining activities. The transfer capacity of Cd from soils to wheat roots was greater than that from the wheat roots to grains. Multiple linear regression model clarified that soil pH and exchangeable Cd fraction in soils were the critical factors affecting the Cd accumulation in wheat grains. The carcinogenic risk of Cd levels in our studied wheat grains was a concern but still within the acceptable range, while their non-carcinogenic hazard was negligible for adults and children. The calculation results were in accord with the uncertainty analysis conclusion based on Monte Carlo simulation. The study was expected to promote the source management and control strategy of reducing tailing discharge, and providing scientific references for current soil remediation and land degradation prevention.
Assuntos
Minas de Carvão , Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Cádmio/metabolismo , Solo , Triticum/metabolismo , Monitoramento Ambiental , Poluentes do Solo/análise , China , Medição de Risco , Metais Pesados/análiseRESUMO
The rapid increase in urbanization and intensive coal mining activities have accelerated the deterioration of surface water quality. Environmental problems caused by the accumulation of nitrate and sulfate from natural, urban, and agricultural sources have attracted extensive attention. Information on nitrate and sulfate sources and their transformations is crucial for understanding the nitrogen and sulfur cycles in surface water. In this study, we monitored nitrate and sulfate in three representative rivers in mining cities in northern China. The main pollution sources and biogeochemical processes were identified by using stable isotopes (δD, δ18OH2O, δ15N, δ18ONO3, δ34S and δ18OSO4) and hydrochemistry. The contribution of natural and anthropogenic sources was quantitatively estimated based on a Bayesian mixed model. The results indicated a large variation in sulfate and nitrate sources between the different rivers. Nitrate in the Tuohe River mainly derived from manure/sewage (57.9%) and soil N (26.9%), while sulfate mainly derived from manure/sewage (41.7%) and evaporite dissolution (26.8%). For the Suihe River, nitrate was primarily sourced from chemical fertilizer (37.9%) and soil nitrogen (34.8%), while sulfate was mainly sourced from manure/sewage (33.1%) and chemical fertilizer (21.4%). For the Huihe River, nitrate mainly derived from mine drainage (56.6%) and manure/sewage (30.6%), while sulfate predominantly originated from mine drainage (58.3%) and evaporite dissolution (12.9%). Microbial nitrification was the major pathway for the migration and transformation of nitrate in the surface water. However, denitrification and bacterial sulfate reduction (BSR) did not play a significant role as aerobic conditions prevailed. In this study, we elucidated the sources and transformation mechanisms of nitrate and sulfate. Additionally, we provided a reference for formulating a comprehensive strategy for effective management and remediation of surface water contaminated with nitrate and sulfate in mining cities.
Assuntos
Nitratos , Poluentes Químicos da Água , Nitratos/análise , Fertilizantes/análise , Sulfatos , Esgotos , Esterco/análise , Monitoramento Ambiental/métodos , Teorema de Bayes , Poluentes Químicos da Água/análise , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise , Rios , Nitrogênio/análise , Solo , Óxidos de Nitrogênio , ChinaRESUMO
This study prepared and characterized bamboo-derived biochar loaded with different ratios of iron and manganese; evaluated its remediation performance in arsenic-contaminated soil by studying the changes in various environmental factors, arsenic speciation, and arsenic leaching amount in the soil after adding different materials; proposed the optimal ratio and mechanism of iron-manganese removal of arsenic; and explained the multivariate relationship between enzyme activity and soil environmental factors based on biological information. Treatment with Fe-Mn-modified biochar increased the organic matter, cation exchange capacity, and N, P, K, and other nutrient contents. During the remediation process, O-containing functional groups such as Mn-O/As and Fe-O/As were formed on the surface of the biochar, promoting the transformation of As from the mobile fraction to the residual fraction and reducing the phytotoxicity of As, and the remediation ability for As was superior to that of Fe-modified biochar. Mn is indispensable in the FeMn-BC synergistic remediation of As, as it can increase the adsorption sites and the number of functional groups for trace metals on the surface of biochar. In addition to electrostatic attraction, the synergistic mechanism of ferromanganese-modified biochar for arsenic mainly involves redox and complexation. Mn oxidizes As(â ¢) to more inert As(V). In this reaction process, Mn(â £) is reduced to Mn(â ¢) and Mn(II), promoting the formation of Fe(â ¢) and the conversion of As into Fe-As complexes, while As is fixed due to the formation of ternary surface complexes. Moreover, the effect of adding Fe-Mn-modified biochar on soil enzyme activity was correlated with changes in soil environmental factors; catalase was correlated with soil pH; neutral phosphatase was correlated with soil organic matter; urease was correlated with ammonia nitrogen, and sucrase activity was not significant. This study highlights the potential value of FM1:3-BC as a remediation agent in arsenic-contaminated neutral soils.
Assuntos
Arsênio , Poluentes do Solo , Manganês/química , Arsênio/química , Compostos Férricos , Poluentes do Solo/química , Carvão Vegetal/química , Ferro/química , Solo/químicaRESUMO
East China is a highly aggregated coal-grain composite area where coal mining and agricultural production activities are both flourishing. At present, the geochemical characteristics of dissolved inorganic carbon (DIC) in groundwater in coal mining areas are still unclear. This study combined hydrochemical and carbon isotope methods to explore the sources and factors influencing DIC in the groundwater of different active areas in coal mining areas. Moreover, the 13C isotope method was used to calculate the contribution rates of various sources to DIC in groundwater. The results showed that the hydrochemical types of groundwater were HCO3-Ca·Na and HCO3-Na. The main waterârock interactions were silicate and carbonate rock weathering. Agricultural areas were mainly affected by the participation of HNO3 produced by chemical fertilizer in the weathering of carbonate rocks. Soil CO2 and carbonate rock weathering were the major sources of DIC in the groundwater. Groundwater in residential areas was primarily affected by CO2 from the degradation of organic matter from anthropogenic inputs. Sulfate produced by gypsum dissolution, coal gangue accumulation leaching and mine drainage participated in carbonate weathering under acidic conditions, which was an important factor controlling the DIC and isotopic composition of groundwater in coal production areas. The contribution rates of groundwater carbonate weathering to groundwater DIC in agricultural areas and coal production areas ranged from 57.46 to 66.18% and from 54.29 to 62.16%, respectively. In residential areas, the contribution rates of soil CO2 to groundwater DIC ranged from 51.48 to 61.84%. The results will help clarify the sources and circulation of DIC in groundwater under the influence of anthropogenic activities and provide a theoretical reference for water resource management.
Assuntos
Minas de Carvão , Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Dióxido de Carbono/análise , Isótopos de Carbono/análise , Carbonatos/análise , Água Subterrânea/química , China , Solo , Carvão Mineral/análise , Poluentes Químicos da Água/análiseRESUMO
Chromium (Cr), one of the prime hazardous trace elements in coals, may engender adverse effects on eco-environment and threaten human health during utilization of coal. Based on the samples obtained in our laboratory and published literature, the abundance and modes of occurrence of Cr in Chinese coals, and the environmental impacts associated with coal-fired power plants (CFPPs) were elucidated in this study. With a total of 1397 sets of data, the mean concentration of Cr in Chinese coals was calculated as 21.33 µg/g by the "reserve-concentration" weighted calculation method. Spatially, the average Cr contents increased gradually from North China to South China. Temporally, coals from T3, E-N and P2 were relatively enriched in Cr compared to the other geological time. The Cr concentration in coal varied with different coal ranks. The geological factors accounted for Cr enrichment in coals could be divided into the primary, secondary and epigenetic processes. Higher percentages of organically Cr occurred in low-rank coals, while inorganically associated Cr was mainly found in clay minerals. After coal combustion, most of Cr was enriched in solid wastes (e.g., fly ash and bottom ash). The leaching of Cr from solid wastes in the rainy season (especially acid rain) needs to be a concern for CFPPs. It was estimated that the atmospheric emission of Cr from CFPPs increased annually from 2015 to 2019 and reached approximately 159 tons in 2019.
Assuntos
Cromo , Carvão Mineral , China , Cromo/toxicidade , Carvão Mineral/análise , Cinza de Carvão/análise , Centrais Elétricas , Resíduos SólidosRESUMO
Coal mining cities are universally confronted with the degradation of groundwater quality, and the sulfate pollution of groundwater has become a widely studied environmental problem. In this study, we combined multi-isotope (δ34S, δ18O-SO42- and 87Sr/86Sr) approach with hydrochemical technique and a Bayesian mixed model to clarify sources and transformations and to quantitatively assess the contribution of sulfate from potential sources. The concentrations of SO42- in groundwater ranged from 7.7 mg/L to 172.9 mg/L, and the high-value areas were located in coal mining area and residential area. The total values of δ34S and δ18O-SO42- varied from 10.6 to 26.9 and 6.9 to 14.1, respectively, in the groundwater. Analyses of SO42- and Sr isotopes and water chemistry indicated that SO42- in groundwater originated from various sources, such as atmospheric precipitation, sulfide mineral oxidation, evaporite dissolution, sewage and mine drainage. The oxidation of pyrite and bacterial sulfate reduction (BSR) had no significant impact on the stable isotopes of groundwater. At the same time, the calculation results of the Bayesian mixed model showed that the sources of SO42- in groundwater mainly include evaporite dissolution in aquifer and mine drainage in the mixture of shallow and deep groundwater, with high contribution proportions of 39.8 ± 10.9% and 31.9 ± 5.7%, respectively, while the contributions of sewage (13.9 ± 8.5%), atmospheric precipitation (9.6 ± 8.6%) and the oxidation of sulfide (4.7 ± 3.3%) to SO42- were lower. The research results revealed the source of SO42- pollution in shallow groundwater in the coal mine area and provided an important scientific basis for the effective management and protection of groundwater resources.
Assuntos
Minas de Carvão , Água Subterrânea , Poluentes Químicos da Água , Sulfatos/análise , Monitoramento Ambiental/métodos , Esgotos/análise , Teorema de Bayes , Poluentes Químicos da Água/análise , Sulfetos/análise , Isótopos/análise , ChinaRESUMO
In the mining area affected by coal mining activities for a long time, heavy metal Zn pollution poses a serious threat to soil quality and human health, and direct evidence showing the relationship between Zn accumulation mechanism in soils and mining activities is lacking. In this study, the Zn content and isotopes composition (δ66Zn) from soil and environmental samples around mining area were determined and analyzed to clarify the Zn characteristics in soil. Moreover, the distribution and source of Zn content in soil of mining area were analyzed by mathematical statistics, correlation analysis and isotope mass mixing model. The results showed that: (1) the Zn content in soil ranged from 95 to 327 mg·kg-1 (mean: 233 mg·kg-1), exceeding the control point and the soil background value of Anhui Province; (2) the results of Zn isotope analysis showed that Zn in soil mainly derived from the wind dispersion input of fine particles in gangue and fly ash, followed by the natural weathering of parent material; (3) isotopic mass mixing model can be used to distinguish the contribution of anthropogenic and natural Zn sources. Mining input was the main contribution source of Zn in soil (mean: 67%), followed by natural background (mean: 33%). The employment of Zn isotopes can effectively evaluate the impact of anthropogenic and natural long-term processes on Zn in the soil of the mining area, and provide important information for the formulation of soil metal pollution control measures.
Assuntos
Minas de Carvão , Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental/métodos , Humanos , Isótopos/análise , Metais Pesados/análise , Mineração , Solo , Poluentes do Solo/análise , Zinco/análise , Isótopos de Zinco/análiseRESUMO
Severe environmental issues are caused by long-term coal mining activities; however, the process of mercury (Hg) response in mining subsidence area sediments (MSAS) is still unclear, and direct evidence showing the relationship between Hg accumulation mechanism in sediments and mining activities is lacking. In this study, the characteristics of total mercury (THg) content in MSAS were investigated. Moreover, Hg isotopes were obtained to determine the main sources and environmental process of mercury in MSAS, and a MixSIAR mixing model was first used to estimate the potential Hg sources. The THg content ranged from 27.5 to 113.9 ng/g, with a mean of 65.8 ± 29.4 ng/g, exceeding the local soil background value (19.7 ng/g). The Hg in MSAS was affected by clay and organic matter. The Δ199Hg and Δ201Hg in the sediments varied from - 0.05-0.05 (mean: -0.01 ± 0.03) and - 0.07-0.01 (mean: -0.02 ± 0.03), respectively, with the fitting results suggesting that a photochemical reaction occurred in some of the Hg in the sediments prior to deposition. The results of the MixSIAR mixing model revealed that the Hg in MSAS was mainly derived from gangue, soil erosion, coal, fly ash, and feed, and their corresponding percentage contribution was 51.5 ± 9.6%, 23.8 ± 13.1%, 13.9 ± 7.9%, 8.1 ± 5.4%, and 3.1 ± 1.4%, respectively. Hg isotopes can be used to trace the transport and transformation of environmental pollutants, and this may provide an important reference for the assessment and prevention of Hg pollution in typical areas such as coal mining and coal-fired.
RESUMO
The input of pollutants caused by human activities induces the deterioration of surface water quality. To reveal the characteristics of surface water quality in Chaohu Lake Basin and the influence of human activities, the hydrochemistry and stable isotope composition of hydrogen and oxygen in lake water and inflow river water were analyzed. The results show that the hydrochemical type of lake water is the Na-Cl type,while river water is the Na-Cl, Ca-Cl and mixed types. The ion proportional coefficient method and principal component analysis show that surface water is controlled by weathering of evaporated salt rocks and silicate rocks, in which Cl- and SO42- are affected by fertilizers and sewage to some extent. There is a strong correlation between conventional ions and nutrient indexes, which indicates that dissolved ions are affected not only by rock weathering but also by human activities (such as the discharge of domestic sewage or nitrogen-containing wastewater and the use of fertilizers). The stable isotope values of hydrogen and oxygen in surface water are distributed at the lower right portion of the local precipitation line and are close to it, indicating that surface water mainly originates from precipitation. The high value of d-excess values in surface water indicates that evaporation is weak. As pollution indicators, EC, Cl- and NO3- indicates that the Nanfei River, Dianbu River, Shiwuli River and Pai River flow in northwestern of Chaohu Lake Basin through Hefei urban city are severely polluted, NO3- originates from manure and sewage. Rivers flowing through farmland areas are less polluted, and the use of agricultural fertilizer contributes greatly to NO3-.
Assuntos
Lagos , Poluentes Químicos da Água , China , Monitoramento Ambiental/métodos , Fertilizantes/análise , Atividades Humanas , Humanos , Hidrogênio/análise , Íons , Lagos/química , Isótopos de Oxigênio/análise , Rios/química , Esgotos/análise , Poluentes Químicos da Água/análise , Qualidade da ÁguaRESUMO
In this study, the surface of vermiculite-montmorillonite was modified by MnO2 loading. The modified vermiculite-montmorillonite was added to remediate the potentially toxic trace element (PTE) Hg present in soil containing coal gangue. Pot experiments were conducted to analyze and compare the pH values, Hg contents and Hg species present in coal gangue-containing soil, with and without the modified materials added, to determine whether the addition of modified materials had an effect on the growth of Brassica chinensis L. Results showed that with the addition of 35 g·kg-1 modified vermiculite-montmorillonite, the pH of soil increased by a value of 0.79, compared with that in the control group. When 15 g·kg-1 was added, the concentration of Hg in soil decreased by 98.2%. The addition of modified materials promoted the transformation of Hg in soil from a bioavailable form to an unavailable form; that is, the content of the residual form increased. The plant height and biomass of Brassica chinensis L. also increased, which indicated that the addition of modifiers can increase soil productivity, reduce the effects of PTEs on organisms in soil, and promote plant growth. Therefore, the addition of modified vermiculite-montmorillonite can achieve remediation of coal gangue-containing soil.
Assuntos
Brassica , Mercúrio , Poluentes do Solo , Silicatos de Alumínio , Bentonita , Carvão Mineral , Compostos de Manganês/farmacologia , Mercúrio/análise , Óxidos/farmacologia , Solo/química , Poluentes do Solo/análiseRESUMO
The enrichment of heavy metals in air-borne particulate matters poses a great threat to health. In order to understand the mineralogical characteristics and sources of heavy metals in atmospheric particulate matter in coal mining cities, PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 µm), PM10 (particulate matter with an aerodynamic diameter less than 10 µm) and TSP (total suspended particulates) were sampled from Huainan city, China in December 2016 and May 2017. The contents of heavy metals in TSP are the highest, while those in PM2.5 are the lowest. Zn, Mn, and Pb are the main components of heavy metals in Huainan atmospheric particulates. Straw burning activities may result in relatively higher atmospheric particulate matter content in summer than that in winter. The proportion of mineral particles in the studied particulate matters was the highest (40.79%), followed by soot aggregates (35.55%) and coal fly ash (19.74%). The results of energy spectrum analysis show that the main component of soot aggregates is C, and other contents are contributed by elements such as O and Si. Coal fly ash mainly contains C, O, Si, and a small amount of Al and Na. As, Cd, and Hg are the most easily enriched heavy metals. Industrial emissions, traffic discharges, coal combustion and dust emissions were found to be the main sources of heavy metals in atmospheric particulates.
Assuntos
Poluentes Atmosféricos , Metais Pesados , Poluentes Atmosféricos/análise , China , Cidades , Monitoramento Ambiental , Metais Pesados/análise , Material Particulado/análise , Estações do AnoRESUMO
This study investigated the environmental geochemical characteristics of rare-earth elements (REEs) in surface waters in the Huainan mining area, Anhui Province, China. The REEs concentrations were determined by ICP-MS, and the inorganic species of dissolved REEs in the river and coal mining subsidence area water samples were calculated by using the Visual MINTEQ (version 3.1) code. On this basis, the distribution and geochemical characteristics of REEs in the surface waters were systematically analyzed, and the main inorganic species of REEs were investigated. The results showed the following: (1) The REEs concentrations in the surface waters were relatively low, ranging from 0.1361 to 0.3536 µg/L, and the average ∑REEs concentration was 0.2062 µg/L. Compared with light rare-earth elements (LREEs), heavy rare-earth elements (HREEs) were significantly enriched, with an average enrichment factor of 1.4642. Due to the interaction of high pH values and high cation concentrations, the ∑REEs content in the subsidence area water was significantly lower than that in the river water. (2) The distribution pattern of REEs in the surface waters normalized against the North American Shale Composite (NASC) showed that the REEs in the study area had different degrees of cerium (Ce) and europium (Eu) anomalies. The negative Ce anomalies were probably closely related to the pH conditions, whereas the positive Eu anomalies were mainly attributed to preferential chemical weathering and the dissolution of feldspar minerals. (3) The simulation results obtained by using Visual MINTEQ code showed that the dominant and typically inorganic complex form of REEs in the surface waters was carbonate complexes, and this form was one of the reasons for the enrichment of HREEs in the surface water.
Assuntos
Cério , Minas de Carvão , Metais Terras Raras , China , Monitoramento Ambiental/métodos , Európio , Metais Terras Raras/análise , Mineração , ÁguaRESUMO
Slag tailings are produced by "cooling-grinding-ball milling-flotation" and other processes of slag, while slag is produced by the flash smelting of the original ore. The utilization and environmental hazards of arsenic in slag tailings have become a focus of attention. This study on slag tailings reveals the presence of arsenic in copper smelting tailings from the mineralogy and leaching perspectives, and the noncarcinogenic and carcinogenic risks of arsenic to the human body were assessed by using the USEPA health risk model. The surface particles of the slag tailings were unevenly dispersed, and the mineral crystals were relatively complete. A small amount of secondary minerals had grown on the mineral surface. Most of the fine particles adhered to the surface of the main mineral to form inclusions. The mineral composition of the slag tailings was dominated by maghemite (Fe3O4) and fayalite (Fe2SiO4), and the arsenic-bearing minerals were unevenly distributed, where As (â ¤) fine particles were embedded in maghemite, amorphous phase and fayalite. There was a large amount of residual arsenic in the slag tailing particles, and the leaching content of arsenic in the toxicity leaching procedure was always lower than the limit of 5 mg/L. The health risk to the exposed population was evaluated by the USEPA health risk model. Since the exposed population in the industrial land is mainly adults, it is determined that the tailings will not cause harm to children's health. In this evaluation, the exposure duration (length of service of the workers) of 30 years, exposure frequency of 314 d/y and body weight of 60 kg (average weight of the workers) were taken as the parameters of three exposure pathways: hand-oral ingestion, respiratory system inhalation and skin contact. Therefore, longer activity time of the workers in the tailing workshop corresponds to a higher HI (hazard index). Although the arsenic in the slag tailings had a certain degree of bioavailability, it was not sufficient to adversely affect human health.
Assuntos
Arsênio/toxicidade , Cobre , Exposição Ambiental/estatística & dados numéricos , Arsênio/análise , Arsênio/química , Humanos , Metalurgia , Minerais , Medição de RiscoRESUMO
Mining activities exert a far-reaching impact on the quality of groundwater, and health problems caused by heavy metal pollution have attracted global attention. In this study, inductively coupled plasma-mass spectrometry (ICP-MS) was employed to determine the contents of 8 heavy metals (Cd, Cr, As, Fe, Mn, Cu, Zn, and Pb) in shallow groundwater samples retrieved from a mining area in northern Anhui. Multivariate statistical methods were adopted to analyze the distribution and source of pollution and to evaluate 5% and 95% health risks based on Monte Carlo simulation. Fe, As and Cr significantly exceeded the safe drinking water standards of the World Health Organization (WHO). The average concentrations of As and Cr were as high as 46.45 µg/L and 133.96 µg/L, respectively. The correlation analysis and principal component analysis (PCA) results revealed that heavy metals are affected by complex factors, the main factor being human activities. The total carcinogenic health risks of Cr and As in adults were 2.49 × 10-3 and 3.43 × 10-4, respectively, which exceeded the maximum acceptable risk value (1 ×10-4) recommended by the United States Environmental Protection Agency (USEPA), affecting human health. According to the USEPA classification of hazardous ingestion (HI), at HI < 1, the impact of non-carcinogenic heavy metals on human health is negligible. These results indicate that local residents should strengthen the monitoring of Cr and As pollution in shallow groundwater.
RESUMO
The increase in NO3- content in surface water caused by intensive mining activities in Huainan City, China, has attracted considerable attention owing to the deterioration of water quality and the degradation of ecosystems in recent years. The Huainan mining area, which is highly disturbed by anthropogenic activities, was selected as a typical observation area, and the surface water was classified as open subsidence water (OSW), closed subsidence water (CSW), and river water (RW). Moreover, the hydrochemical parameters and the δ15N and δ18O values of nitrate were employed to quantitatively trace the sources and biochemical transformation of NO3-, and the contribution ratios of different NO3- sources were estimated using the stable isotope analysis in R based on the Bayesian model. There was evident nitrification in the study area, but no significant denitrification has occurred. A substantial portion of δ15N-NO3- demonstrated complex sources of NO3-. Compared with those of CSW, the NO3- compositions of the OSW approached to those of the RW due to river recharge and discharge, and were greatly affected by anthropogenic activities. The proportional contribution of manure and sewage in the OSW was found to be the highest with a mean value of 39.5 % ± 12.3 %, which was followed by that of mine drainage (mean: 22.1 % ± 13.1 %), chemical fertilizer (mean: 17.5 % ± 10.6 %), and soil organic nitrogen (mean: 17.5 % ± 11.6 %). In the RW, the highest mean contribution of manure sewage was 35.2 % ± 9.7 %, which was followed by that of chemical fertilizer (mean: 29.3 % ± 7.2 %), mine drainage (mean: 23.4 % ± 13.0 %), and soil organic nitrogen (mean: 10.9 % ± 8.3 %). In contrast, the contribution of chemical fertilizer to the CSW was the highest with a mean value of 33.9 % ± 13.6 %, which was followed by that of soil organic nitrogen (mean: 26.5 % ± 13.8 %), mine drainage (mean: 18.1 % ± 11.6 %). Therefore, NO3- in the surface water of the mining area primarily originates from chemical fertilizers and manure sewage. In addition, the contribution of mine drainage to nitrate in the study area indicates the potential impact of mining activities on surface water. These findings highlight the value of classifying different types of surface water in tracing NO3- contamination sources, and provide relevant theoretical basis for tracing nitrate sources in other areas.
Assuntos
Nitratos , Poluentes Químicos da Água , Teorema de Bayes , China , Ecossistema , Monitoramento Ambiental , Nitratos/análise , Isótopos de Nitrogênio/análise , Poluentes Químicos da Água/análiseRESUMO
The thermochemical and kinetic behavior of co-combustion of coal, municipal sludge (MS) and their blends at different ratios were investigated by thermogravimetric analysis. Simulation experiments were performed in a vacuum tube furnace to determine the conversion behavior of toxic elements. The results show that the combustion processes of the blends of coal and municipal sludge are divided into three stages and the combustion curves of the blends are located between those of individual coal and municipal sludge samples. The DTGmax of the sample with 10% sludge addition reaches a maximum at the heating rate of 20 °C/min, indicating that the combustion characteristics of coal can be improved during co-combustion. Strong interactions were observed between coal and municipal sludge during the co-combustion. The volatilization rates of toxic elements decrease with an increasing proportion of sludge in the blends during co-combustion, which indicates that the co-combustion of coal and sludge can effectively reduce the volatilization rate of toxic elements. The study reflects the potential of municipal sludge as a blended fuel and the environmental effects of co-combustion of coal and municipal sludge.