RESUMO
With severe soil and water erosion, the crucial ion-adsorption rare earth elements (REEs) have attracted much global attention. REEs play a vital role in tracing material sources and exploring sedimentary characteristics due to their unique and stable geochemistry properties. In the present work, three representational possible redeposition areas in western Fujian were selected as the study areas. The geochemical characteristics of REEs in the sediments of the study areas were evaluated to elucidate that REEs are the products of soil and water erosion and to assess their redeposition characteristics. In the research results, the properties of the parent rocks shown in the samples, together with the negative correlation between the content of REEs in the samples and altitude as well as the relief degree on the land surface (RDLS), fully indicate that the sediments in the study areas are the products of migration caused by soil erosion and redeposition in the downstream areas. At the same time, according to the widely applicable standard of rare earth resources exploitation, that is the boundary grade of ion-adsorption rare earth ore in southern China (∑REE = 500 mg·kg-1), we found that the content of REEs in the study areas was close to or exceeded this standard, and the maximum ∑REE of Guozhai Reservoir (869.11 mg·kg-1) was much larger than this standard. Therefore, the redeposited rare earth in Changting Country has high reuse potential under the current scarce resources.
Assuntos
Metais Terras Raras , Solo , Adsorção , Monitoramento Ambiental , Erosão do Solo , ÁguaRESUMO
Little is known about the clipping strategy to assist phytoremediation by Dicranopteris dichotoma at rare earth mines. We evaluated the phytoremediation ability of D. dichotoma, designed an appropriate clipping strategy, and obtained the phytoextraction time for rare earth elements (REE) by field investigation, laboratory measurement, and statistical analysis etc. at four rare earth mines in south China. D. dichotoma growth and soil nutrients tended to increase across the ecological restoration chronosequence, the total REE content in aboveground biomass was ≥1,000 mg kg-1, the bioabsorption coefficient and translocation factor were ≥1, and the phytoextraction of light REE was greater than heavy REE. Overall, the REE accumulation did not vary significantly among seasons, the total REE accumulation in the underground biomass accounted for 26.55-64% and the vegetation covers were about 90% two years after clipping. It would take 57.88-168.57 years to reduce soil total REE content, and the soil nutrients and REE accumulations of D. dichotoma at Longjing were the highest. D. dichotoma has potential for REE phytoextraction and phytostabilization simultaneously. D. dichotoma should be clipped in winter once every two years with underground biomass retained. The REE phytoextraction time is long with soil nutrients being important influencing factors.
Assuntos
Metais Terras Raras/análise , Traqueófitas , Biodegradação Ambiental , China , Mineração , SoloRESUMO
Neuroinflammation contributes to neurological dysfunction in the patients who suffer from subarachnoid hemorrhage (SAH). Isoliquiritigenin (ISL) is a bioactive component extracted from Genus Glycyrrhiza. This work is to investigate whether ISL ameliorates neuroinflammation after SAH. In this study, intravascular perforation of male Sprague-Dawley rats was used to establish a SAH model. ISL was administered by intraperitoneal injection 6 h after SAH in rats. The mortality, SAH grade, neurological score, brain water content, and blood-brain barrier (BBB) permeability were examined at 24 h after the treatment. Expressions of tumor necrosis factor-α, interleukin-6, Iba-1, and MPO were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Besides, the expression levels of NF-κB p65 and NLRP3, ASC, caspase-1, IL-1ß, and IL-18 were analyzed by western blot. The experimental data suggested that ISL treatment could ameliorate neurological impairment, attenuate brain edema, and ameliorate BBB injury after SAH in rats. ISL treatment repressed the expression of proinflammatory cytokines TNF-α and IL-6, and meanwhile inhibited the expression of Iba-1 and MPO. ISL also repressed NF-κB p65 expression as well as the transport from the cytoplasm to the nucleus. In addition, ISL significantly suppressed the expression levels of NLR family pyrin domain containing 3 (NLRP3), ASC, caspase-1, IL-1ß, and IL-18. These findings suggest that ISL inactivates NLRP3 pathway by inhibiting NF-κB p65 translocation, thereby repressing the neuroinflammation after SAH, and it is a potential drug for the treatment of SAH.