Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38106022

RESUMO

Cancer immunotherapies have produced remarkable results in B-cell malignancies; however, optimal cell surface targets for many solid cancers remain elusive. Here, we present an integrative proteomic, transcriptomic, and epigenomic analysis of tumor specimens along with normal tissues to identify biologically relevant cell surface proteins that can serve as immunotherapeutic targets for neuroblastoma, an often-fatal childhood cancer of the developing nervous system. We apply this approach to human-derived cell lines (N=9) and cell/patient-derived xenograft (N=12) models of neuroblastoma. Plasma membrane-enriched mass spectrometry identified 1,461 cell surface proteins in cell lines and 1,401 in xenograft models, respectively. Additional proteogenomic analyses revealed 60 high-confidence candidate immunotherapeutic targets and we prioritized Delta-like canonical notch ligand 1 (DLK1) for further study. High expression of DLK1 directly correlated with the presence of a super-enhancer spanning the DLK1 locus. Robust cell surface expression of DLK1 was validated by immunofluorescence, flow cytometry, and immunohistochemistry. Short hairpin RNA mediated silencing of DLK1 in neuroblastoma cells resulted in increased cellular differentiation. ADCT-701, a DLK1-targeting antibody-drug conjugate (ADC), showed potent and specific cytotoxicity in DLK1-expressing neuroblastoma xenograft models. Moreover, DLK1 is highly expressed in several adult cancer types, including adrenocortical carcinoma (ACC), pheochromocytoma/paraganglioma (PCPG), hepatoblastoma, and small cell lung cancer (SCLC), suggesting potential clinical benefit beyond neuroblastoma. Taken together, our study demonstrates the utility of comprehensive cancer surfaceome characterization and credentials DLK1 as an immunotherapeutic target. Highlights: Plasma membrane enriched proteomics defines surfaceome of neuroblastomaMulti-omic data integration prioritizes DLK1 as a candidate immunotherapeutic target in neuroblastoma and other cancersDLK1 expression is driven by a super-enhancer DLK1 silencing in neuroblastoma cells results in cellular differentiation ADCT-701, a DLK1-targeting antibody-drug conjugate, shows potent and specific cytotoxicity in DLK1-expressing neuroblastoma preclinical models.

2.
Med Eng Phys ; 119: 104037, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37634908

RESUMO

To achieve real-time blood pressure monitoring, a novel non-invasive method is proposed in this article. Electrocardiographic (ECG) and pulse wave signals (PPG) are fused from a multi-omics signal-level perspective. A physiological signal fusion matrix and fusion map, which can estimate the blood pressure of blood loss(BPBL), are constructed. The results demonstrate the efficacy of the fusion map model, with correlation values of 0.988 and 0.991 between the estimated BPBL and the true systolic blood pressure (SBP) and diastolic blood pressure (DBP), respectively. The root mean square errors for SBP and DBP were 3.21 mmHg and 3.00 mmHg, respectively. The model validation showed that the fusion map method is capable of simultaneous highlighting of the respective characteristics of ECG and PPG and their correlation, improving the utilization of the information and the accuracy of BPBL. This article validates that physiological signal fusion map can effectively improve the accuracy of BPBL estimation and provides a new perspective for the field of physiological information fusion.


Assuntos
Determinação da Pressão Arterial , Eletrocardiografia , Pressão Sanguínea , Frequência Cardíaca , Multiômica
3.
Nat Struct Mol Biol ; 29(11): 1101-1112, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36344846

RESUMO

Alternative polyadenylation (APA) yields transcripts differing in their 3'-end, and its regulation is altered in cancer, including prostate cancer. Here we have uncovered a mechanism of APA regulation impinging on the interaction between the exonuclease XRN2 and the RNA-binding protein Sam68, whose increased expression in prostate cancer is promoted by the transcription factor MYC. Genome-wide transcriptome profiling revealed a widespread impact of the Sam68/XRN2 complex on APA. XRN2 promotes recruitment of Sam68 to its target transcripts, where it competes with the cleavage and polyadenylation specificity factor for binding to strong polyadenylation signals at distal ends of genes, thus promoting usage of suboptimal proximal polyadenylation signals. This mechanism leads to 3' untranslated region shortening and translation of transcripts encoding proteins involved in G1/S progression and proliferation. Thus, our findings indicate that the APA program driven by Sam68/XRN2 promotes cell cycle progression and may represent an actionable target for therapeutic intervention.


Assuntos
Poliadenilação , Neoplasias da Próstata , Humanos , Masculino , Regiões 3' não Traduzidas/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Neoplasias da Próstata/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
4.
Adv Mater ; 33(26): e2100582, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34060157

RESUMO

A highly sensitive short-wave infrared (SWIR, λ > 1000 nm) organic photodiode (OPD) is described based on a well-organized nanocrystalline bulk-heterojunction (BHJ) active layer composed of a dicyanovinyl-functionalized squaraine dye (SQ-H) donor material in combination with PC61 BM. Through thermal annealing, dipolar SQ-H chromophores self-assemble in a nanoscale structure with intermolecular charge transfer mediated coupling, resulting in a redshifted and narrow absorption band at 1040 nm as well as enhanced charge carrier mobility. The optimized OPD exhibits an external quantum efficiency (EQE) of 12.3% and a full-width at half-maximum of only 85 nm (815 cm-1 ) at 1050 nm under 0 V, which is the first efficient SWIR OPD based on J-type aggregates. Photoplethysmography application for heart-rate monitoring is successfully demonstrated on flexible substrates without applying reverse bias, indicating the potential of OPDs based on short-range coupled dye aggregates for low-power operating wearable applications.

5.
J Phys Chem Lett ; 8(6): 1118-1123, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28195742

RESUMO

We report the polarized absorption spectra of high-quality, thin crystals of a perylene diimide (PDI) species with branched side chains (B2). The absorption spectrum shows exemplary polarization-dependent H-like and J-like aggregate behavior upon orthogonal excitation, with a sizable Davydov splitting (DS) of 1230 cm-1 and peak to peak splitting of 3040 cm-1. The experimental results are compared to theoretical calculations with remarkable agreement. The theoretical analysis of the polarized absorption spectra shows evidence of a high degree of intermolecular charge transfer, which, along with Coulombic coupling, conspires to create the unprecedented DS for this family of dye molecules. The large polarization dependence of the electronic spectra is attributed to the unique twisted crystal structure, in which a substantial rotational displacement exists between neighboring chromophores within a π-stack. These results highlight the strong sensitivity of the Davydov splitting to intermolecular geometry in PDI systems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa