Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 433
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(2): e2305481, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658518

RESUMO

This work reports a dual heterojunction of etched MIL-68(In)-NH2 (MN) supported heptazine-/triazine-based carbon nitride (HTCN) via a facile hydrothermal process for photocatalytic ammonia (NH3 ) synthesis. By applying the hydrothermal treatment, MN microrods are chemically etched into hollow microtubes, and HTCN with nanorod array structures are simultaneously tightly anchored on the outside surface of the microtubes. With the addition of 9 wt% HTCN, the resulting dual heterojunction presents an enhanced photocatalytic ammonia yield rate of 5.57 mm gcat -1 h-1 with an apparent quantum efficiency of 10.89% at 420 nm. Moreover, stable ammonia generation using seawater, tap water, lake water, and turbid water in the absence of sacrificial reagents verifies the potential of the dual-heterojunction composites as a commercially viable photosystem. The obtained one-dimensional (1D) microtubes and coating of HTCN confers this unique composite with extended visible-light harvesting and accelerated charge carrier migration via a multi-stepwise charge transfer pathway. This work provides a new strategy for optimizing nitrogen (N2 )-into-ammonia conversion efficiency by designing novel dual-heterojunction catalysts.

2.
Small ; : e2402219, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634337

RESUMO

In this work, an intramolecular carbon nitride (CN)-based quaternary homojunction functionalized with pyridine rings is prepared via an in situ alkali-assisted copolymerization strategy of bulk CN and 2-aminopyridine for efficient visible light hydrogen generation. In the obtained structure, triazine-based CN (TCN), heptazine-based CN (HCN), pyridine unit incorporated TCN, and pyridine ring inserted HCN constitute a special multicomponent system and form a built-in electric field between the crystalline semiconductors by the arrangement of energy band levels. The electron-withdrawing function of the conjugated heterocycle can trigger the skeleton delocalization and edge induction effect. Highly accelerated photoelectron-hole transfer rates via multi-stepwise charge migration pathways are achieved by the synergistic effect of the functional group modification and molecular quaternary homojunction. Under the addition of 5 mg 2-aminopyridine, the resulting homojunction framework exhibits a significantly improved hydrogen evolution rate of 6.64 mmol g-1 h-1 with an apparent quantum efficiency of 12.27% at 420 nm. Further, the catalyst verifies its potential commercial value since it can produce hydrogen from various real water environments. This study provides a reliable way for the rational design and fabrication of intramolecular multi-homojunction to obtain high-efficient photocatalytic reactions.

3.
Plant Biotechnol J ; 22(7): 2020-2032, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38421616

RESUMO

P/TGMS (Photo/thermo-sensitive genic male sterile) lines are crucial resources for two-line hybrid rice breeding. Previous studies revealed that slow development is a general mechanism for sterility-fertility conversion of P/TGMS in Arabidopsis. However, the difference in P/TGMS genes between rice and Arabidopsis suggests the presence of a distinct P/TGMS mechanism in rice. In this study, we isolated a novel P/TGMS line, ostms19, which shows sterility under high-temperature conditions and fertility under low-temperature conditions. OsTMS19 encodes a novel pentatricopeptide repeat (PPR) protein essential for pollen formation, in which a point mutation GTA(Val) to GCA(Ala) leads to ostms19 P/TGMS phenotype. It is highly expressed in the tapetum and localized to mitochondria. Under high temperature or long-day photoperiod conditions, excessive ROS accumulation in ostms19 anthers during pollen mitosis disrupts gene expression and intine formation, causing male sterility. Conversely, under low temperature or short-day photoperiod conditions, ROS can be effectively scavenged in anthers, resulting in fertility restoration. This indicates that ROS homeostasis is critical for fertility conversion. This relationship between ROS homeostasis and fertility conversion has also been observed in other tested rice P/TGMS lines. Therefore, we propose that ROS homeostasis is a general mechanism for the sterility-fertility conversion of rice P/TGMS lines.


Assuntos
Fertilidade , Homeostase , Oryza , Infertilidade das Plantas , Proteínas de Plantas , Pólen , Espécies Reativas de Oxigênio , Oryza/genética , Oryza/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fertilidade/genética , Pólen/genética , Pólen/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Infertilidade das Plantas/genética , Regulação da Expressão Gênica de Plantas , Temperatura , Luz , Fotoperíodo
4.
J Med Virol ; 96(3): e29542, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506170

RESUMO

The emerging new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) needs booster vaccination. We evaluated the long-term safety and immunogenicity of heterologous boosting with a SARS-CoV-2 messenger RNA vaccine SYS6006. A total of 1000 participants aged 18 years or more who had received two (Group A) or three (Group B) doses of SARS-CoV-2 inactivated vaccine were enrolled and vaccinated with one dose of SYS6006 which was designed based on the prototype spike protein and introduced mutation sites. Adverse events (AEs) through 30 days and serious AEs during the study were collected. Live-virus and pseudovirus neutralizing antibody (Nab), binding antibody (immunoglobulin G [IgG]) and cellular immunity were tested through 180 days. Solicited all, injection-site and systemic AEs were reported by 618 (61.8%), 498 (49.8%), and 386 (38.6%) participants, respectively. Most AEs were grade 1. The two groups had similar safety profile. No vaccination-related SAEs were reported. Robust wild-type (WT) live-virus Nab response was elicited with peak geometric mean titers (GMTs) of 3769.5 (Group A) and 5994.7 (Group B) on day 14, corresponding to 1602.5- and 290.8-fold increase versus baseline, respectively. The BA.5 live-virus Nab GMTs were 87.7 (Group A) and 93.2 (Group B) on day 14. All participants seroconverted for WT live-virus Nab. Robust pseudovirus Nab and IgG responses to wild type and BA.5 were also elicited. ELISpot assay showed robust cellular immune response, which was not obviously affected by virus variation. In conclusion, SYS6006 heterologous boosting demonstrated long-term good safety and immunogenicity in participants who had received two or three doses of SARS-CoV-2 inactivated vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunogenicidade da Vacina , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , China , COVID-19/prevenção & controle , Imunoglobulina G , Vacinas de mRNA , Vacinas de Produtos Inativados
5.
Opt Lett ; 49(2): 218-221, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194532

RESUMO

Binary patterns are used in fast Fourier single-pixel imaging (FSI) technology to increase the imaging speed at the expense of spatial resolution or image quality. In this Letter, we propose a method for optimizing the image quality-speed trade-off that is informed by physical principles and driven by data from simulations. To compensate for the quantization error induced by binary dithering, convolution kernels are proposed and optimized for both low and high spatial frequencies. The proposed method has been demonstrated to work in both simulation and experiments. Other single-pixel imaging (SPI) techniques may also benefit from this approach.

6.
Sensors (Basel) ; 24(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38339585

RESUMO

With the development of the integration and miniaturization of sensing devices, the concept of self-sensing devices has been proposed. A motion state is self-sensed via the structure or integration of an actuator in the construction of a sensing unit. This device is then used to capture the perception and measurement of states such as position, displacement, and speed. A triboelectric nanogenerator converts mechanical energy into electrical energy through the coupling effect of contact generation and electrostatic induction, which represents one of the reliable ways through which to realize integrated sensing. In this world, the power generation technology of the TENG is applied to a sensing device. The sensing characteristics of a grid-like TENG are designed and analyzed in freestanding triboelectric mode. Firstly, a relation model of displacement, velocity, voltage, and charge is established. The charge-transfer increment and current amounts are linearly related to the velocity. The open-circuit voltage has a positive relationship with the displacement. The maximum open-circuit voltage and the maximum charge transfer are fixed values, and they are only related to the inherent parameters of a triboelectric nanogenerator. Next, the sensor model is constructed using COMSOL Multiphysics 6.0. The simulation results show that the relationships between output voltage and charge transfer, as well as those between the increments of charge transfer, velocity, and displacement, are consistent with the results derived from the formula. Finally, a performance test of the designed sensor is carried out, and the results are consistent with the theoretical deduction and simulation. After analysis and processing of the output electrical signal by the host computer, it can feedback the frequency and speed value of the measured object. In addition, the output signal is stable, and there is no large fluctuation or attenuation during the 521-s vibration test. Because the working unit of the sensor is thin filmed, it is small in size, easy to integrate, and has no external power supply; moreover, it can be integrated into a device to realize the self-sensing of a motion state.

7.
Plant Biotechnol J ; 21(8): 1659-1670, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37205779

RESUMO

In rice breeding, thermosensitive genic male sterility (TGMS) lines based on the tms5 locus have been extensively employed. Here, we reported a novel rice TGMS line ostms15 (Oryza sativa ssp. japonica ZH11) which show male sterility under high temperature and fertility under low temperature. Field evaluation from 2018 to 2021 revealed that its sterility under high temperature is more stable than that of tms5 (ZH11), even with occasional low temperature periods, indicating its considerable value for rice breeding. OsTMS15 encodes an LRR-RLK protein MULTIPLE SPOROCYTE1 (MSP1) which was reported to interact with its ligand to initiate tapetum development for pollen formation. In ostms15, a point mutation from GTA (Val) to GAA (Glu) in its TIR motif of the LRR region led to the TGMS phenotype. Cellular observation and gene expression analysis showed that the tapetum is still present in ostms15, while its function was substantially impaired under high temperature. However, its tapetum function was restored under low temperature. The interaction between mOsTMS15 and its ligand was reduced while this interaction was partially restored under low temperature. Slow development was reported to be a general mechanism of P/TGMS fertility restoration. We propose that the recovered protein interaction together with slow development under low temperature compensates for the defective tapetum initiation, which further restores ostms15 fertility. We used base editing to create a number of TGMS lines with different base substitutions based on the OsTMS15 locus. This work may also facilitate the mechanistic investigation and breeding of other crops.


Assuntos
Infertilidade Masculina , Oryza , Masculino , Humanos , Temperatura , Ligantes , Melhoramento Vegetal , Fertilidade , Oryza/genética , Infertilidade das Plantas/genética
8.
Opt Lett ; 48(3): 743-746, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723578

RESUMO

Traditional single-pixel imaging uses Fourier patterns to modulate objects in the Cartesian coordinate system. The Cartesian Fourier pattern of single-pixel imaging is inappropriate to display in a circular field of view. However, a circular field of view is a widespread form of display in computed optical imaging. Here, circular patterns are adopted to adapt to the circular visual area. The circular patterns are displayed in polar coordinates and derived from two-dimensional Fourier transform in polar coordinates. The proposed circular patterns have improved imaging efficiency significantly from 63.66% to 100%. The proposed polar coordinate Fourier single-pixel imaging is expected to be applied in circular field-of-view imaging and foveated imaging.

9.
Phys Chem Chem Phys ; 25(28): 19082-19090, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37427572

RESUMO

By using density functional theory calculations combined with the nonequilibrium Green's function method and machine learning, we systematically studied the thermoelectric properties of four kinds of porous graphene nanosheets (PGNS) before and after nitrogen doping. The results show that the thermoelectric performance of porous graphene nanosheets along the armchair or zigzag chiral direction is improved due to the dramatically enhanced power factor caused by nitrogen doping. The calculated ZT values of nitrogen-doped porous graphene nanosheets are boosted by about one order of magnitude compared with those of undoped porous graphene nanosheets at room temperature. More importantly, an anisotropic thermoelectric transport is found in the nitrogen-doped porous graphene nanosheets. The results show that the ZT values of nitrogen-doped porous graphene nanosheets along the zigzag transport direction are nearly 11 times larger than those of them along the armchair transport direction. These results reveal that the thermoelectric properties of porous graphene nanosheets can be well regulated by nitrogen doping, and provide a good theoretical guidance for their application in thermoelectric devices.

10.
Acta Pharmacol Sin ; 44(12): 2445-2454, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37580492

RESUMO

Acute pancreatitis (AP) is an inflammatory disease of the exocrine pancreas. Disruptions in organelle homeostasis, including macroautophagy/autophagy dysfunction and endoplasmic reticulum (ER) stress, have been implicated in human and rodent pancreatitis. Syntaxin 17 (STX17) belongs to the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) subfamily. The Qa-SNARE STX17 is an autophagosomal SNARE protein that interacts with SNAP29 (Qbc-SNARE) and the lysosomal SNARE VAMP8 (R-SNARE) to drive autophagosome-lysosome fusion. In this study, we investigated the role of STX17 in the pathogenesis of AP in male mice or rats induced by repeated intraperitoneal injections of cerulein. We showed that cerulein hyperstimulation induced AP in mouse and rat models, which was characterized by increased serum amylase and lipase activities, pancreatic edema, necrotic cell death and the infiltration of inflammatory cells, as well as markedly decreased pancreatic STX17 expression. A similar reduction in STX17 levels was observed in primary and AR42J pancreatic acinar cells treated with CCK (100 nM) in vitro. By analyzing autophagic flux, we found that the decrease in STX17 blocked autophagosome-lysosome fusion and autophagic degradation, as well as the activation of ER stress. Pancreas-specific STX17 knockdown using adenovirus-shSTX17 further exacerbated pancreatic edema, inflammatory cell infiltration and necrotic cell death after cerulein injection. These data demonstrate a critical role of STX17 in maintaining pancreatic homeostasis and provide new evidence that autophagy serves as a protective mechanism against AP.


Assuntos
Ceruletídeo , Pancreatite , Masculino , Camundongos , Animais , Ratos , Humanos , Doença Aguda , Ceruletídeo/toxicidade , Modelos Animais de Doenças , Pancreatite/induzido quimicamente , Autofagia/fisiologia , Proteínas SNARE/metabolismo , Edema
11.
Cereb Cortex ; 32(4): 824-838, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383018

RESUMO

Sleep deprivation (SD) causes deficits in off-line memory consolidation, but the underlying network oscillation mechanisms remain unclear. Hippocampal sharp wave ripple (SWR) oscillations play a critical role in off-line memory consolidation. Therefore, we trained mice to learn a hippocampus-dependent trace eyeblink conditioning (tEBC) task and explored the influence of 1.5-h postlearning SD on hippocampal SWRs and related spike dynamics during recovery sleep. We found an increase in hippocampal SWRs during postlearning sleep, which predicted the consolidation of tEBC in conditioned mice. In contrast, sleep-deprived mice showed a loss of tEBC learning-induced increase in hippocampal SWRs during recovery sleep. Moreover, the sleep-deprived mice exhibited weaker reactivation of tEBC learning-associated pyramidal cells in hippocampal SWRs during recovery sleep. In line with these findings, tEBC consolidation was impaired in sleep-deprived mice. Furthermore, sleep-deprived mice showed augmented fast excitation from pyramidal cells to interneurons and enhanced participation of interneurons in hippocampal SWRs during recovery sleep. Among various interneurons, parvalbumin-expressing interneurons specifically exhibited overexcitation during hippocampal SWRs. Our findings suggest that altered hippocampal SWRs and associated spike dynamics during recovery sleep may be candidate network oscillation mechanisms underlying SD-induced memory deficits.


Assuntos
Hipocampo , Privação do Sono , Animais , Hipocampo/fisiologia , Camundongos , Parvalbuminas/metabolismo , Células Piramidais/fisiologia , Sono
12.
BMC Ophthalmol ; 23(1): 47, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726067

RESUMO

BACKGROUND: Morgan and Scheiman's Optometric Extension Program (OEP) expected binocular vision findings have longstanding use in optometry. With technological advances, the demands and standards of binocular function have changed. This study aimed to investigate which binocular visual functions can effectively predict visual behavior performance. METHODS: Participants aged 15-24 years were recruited from two colleges and two universities. After completing the CSMU-Visual Behavioral Performance questionnaire (CSMU-VBP, with four components: near work, visual perception, visual comfort, and whole-body balance), participants were divided into symptomatic and asymptomatic groups based on questionnaire findings (cutoff: < 12 vs. ≥ 12 symptoms). Then a 24-step binocular visual examination was undertaken. Data were analyzed with one-sample, Student's, and paired t-tests. Additionally, receiver operating characteristic analysis was used to determine the predictors of binocular visual function required for near work, visual perception, visual comfort, and body balance dimensions. RESULTS: Among 308 participants, 43 (14%) and 265 (86%) were symptomatic and asymptomatic, respectively. Among the 46 participants with abnormal binocular vision, 36 (78%) reported that they had no obvious symptoms. The commonest dysfunctions were accommodative excess and convergence excess. Most of the binocular visual findings significantly diverged from traditional normal values: amplitude of accommodation, as well as base-in prism to break and recovery points at distance were higher than traditional normal values, whereas others were lower than traditional normal values. Total CSMU-VBP scores indicated that the asymptomatic and symptomatic groups had significant differences in DBO recovery (t = 2.334, p = 0.020) and BAF (t = 1.984, p = 0.048). Receiver operating characteristic curve analysis yielded the following binocular visual functional cutoff points: near work (DBO blur < 7, DBO recovery < 5.5), visual perception (MAF < 10.5, BAF < 10.25), visual comfort (DLP < - 2.25, DBI break > 11.5, NBI blur > 15, NBI break > 17.5, NBI recovery > 13, NPC < 5.75), and body balance (NFD_H > - 0.5, gradient AC/A [minus] > 2.25, NPC < 4.75). CONCLUSIONS: The mean values of binocular visual function among young Taiwanese adults were statistically different from traditional normative values. Further research is required to confirm whether these findings reflect impaired binocular vision or stringent criteria. Assessments of binocular visual function, especially binocular accommodation sensitivity, are crucial in routine optometric examination.


Assuntos
Convergência Ocular , Transtornos da Motilidade Ocular , Humanos , Adulto , Acomodação Ocular , Visão Binocular , Transtornos da Visão/diagnóstico
13.
Ecotoxicol Environ Saf ; 267: 115626, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890247

RESUMO

As the concerned emerging pollutants, several lines of evidence have indicated that nanoplastics (NPs) lead to reproductive toxicity. However, the biological mechanism underlying NPs disturbed spermatogenesis remains largely unknown. Therefore, we aimed to reveal the potential mechanism of impaired spermatogenesis caused by long-term NPs exposure from the perspective of integrated metabolome and microbiome analysis. After 12 weeks of gavage of polystyrene nanoplastics (PS-NPs) and animo-modified polystyrene nanoplastics (Amino-NPs), a well-designed two-exposure stages experimental condition. We found that NPs exposure induced apparent abnormal spermatogenesis, which appeared more severe in the Amino-NPs group. Mechanistically, 14 floras associated with glucose and lipid metabolism were significantly altered, as evidenced by 16 S rRNA sequencing. Testicular metabolome revealed that the Top 50 changed metabolites were also enriched in lipid metabolism. Subsequently, the combined gut microbiome and metabolome analysis uncovered the strong correlations between Klebsiella, Blautia, Parabacteroides, and lipid metabolites (e.g., PC, LysoPC and GPCho). We speculate that the dysbiosis of gut microbiota-related disturbed lipid metabolism may be responsible for long-term NPs-induced damaged spermatogenesis, which provides new insights into NPs-induced dysregulated spermatogenesis.


Assuntos
Microbioma Gastrointestinal , Masculino , Humanos , Microplásticos , Poliestirenos/toxicidade , Espermatogênese , Metaboloma
14.
Ecotoxicol Environ Saf ; 253: 114633, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36889228

RESUMO

The development and utilization of saline-alkaline water, an important backup resource, has received widespread attention. However, the underuse of saline-alkaline water, threatened by the single species of saline-alkaline aquaculture, seriously affects the development of the fishery economy. In this work, a 30-day NaHCO3 stress experimental study combined with analyses of untargeted metabolomics, transcriptome, and biochemical approaches was conducted on crucian carp to provide a better understanding of the saline-alkaline stress response mechanism in freshwater fish. This work revealed the relationships among the biochemical parameters, endogenous differentially expressed metabolites (DEMs), and differentially expressed genes (DEGs) in the crucian carp livers. The biochemical analysis showed that NaHCO3 exposure changed the levels of several physiological parameters associated with the liver, including antioxidant enzymes (SOD, CAT, GSH-Px), MDA, AKP, and CPS. According to the metabolomics study, 90 DEMs are involved in various metabolic pathways such as ketone synthesis and degradation metabolism, glycerophospholipid metabolism, arachidonic acid metabolism, and linoleic acid metabolism. In addition, transcriptomics data analysis showed that a total of 301 DEGs were screened between the control group and the high NaHCO3 concentration group, of which 129 up-regulated genes and 172 down-regulated genes. Overall, NaHCO3 exposure could cause lipid metabolism disorders and induce energy metabolism imbalance in the crucian carp liver. Simultaneously, crucian carp might regulate its saline-alkaline resistance mechanism by enhancing the synthesis of glycerophospholipid metabolism, ketone bodies, and degradation metabolism, at the same time increasing the vitality of antioxidant enzymes (SOD, CAT, GSH-Px) and nonspecific immune enzyme (AKP). Herein, all results will provide new insights into the molecular mechanisms underlying the stress responses and tolerance to saline-alkaline exposure in crucian carp.


Assuntos
Carpas , Carpa Dourada , Animais , Carpa Dourada/metabolismo , Carpas/genética , Multiômica , Antioxidantes/metabolismo , Fígado , Superóxido Dismutase/metabolismo , Glicerofosfolipídeos/metabolismo , Água/metabolismo
15.
BMC Med Educ ; 23(1): 117, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36803504

RESUMO

BACKGROUND: Health professionals, including nurses, experienced heavy workloads and significant physical and mental health challenges during the coronavirus disease (COVID) 19 pandemic, which may affect career choices for those considering nursing and for nursing students. The COVID-19 pandemic is not only a period of risk, but also an occasion to redeploy the professional identity (PI) of nursing students. However, the relationship between perceived social support (PSS), self-efficacy (SE), PI and anxiety remains unclear under the background of COVID-19. This study aims to explore whether PSS has an indirect effect on PI through mediation of SE and whether the anxiety can moderate the relationship between PSS and SE in nursing students during their internship period. METHODS: An observational, national cross-sectional study was conducted following the STROBE guidelines. An online questionnaire was completed by 2,457 nursing students from 24 provinces in China during their internship during September to October 2021. Measures included Chinese translations of the Professional Identity Questionnaire for Nursing Students, the Perceived Social Support Scale, the General Self-Efficacy Scale, the 7-item Generalized Anxiety disorder scale. RESULTS: Both PSS (r = 0.46, p < 0.001) and SE (r = 0.51, p < 0.001) were positively correlated with PI. The indirect effect of PSS on PI through SE was positive (ß = 0.348, p < 0.001), with an effect of 72.7%. The results of the moderating effect analysis showed that anxiety attenuated the effect of PSS on SE. Moderation models indicated that anxiety has a weak negative moderating effect on the effect of PSS on SE (ß =-0.0308, p < 0.05). CONCLUSIONS: A better PSS and higher scores in SE were associated with PI in nursing students, and a better PSS had an indirect effect on the PI of nursing students through SE. Anxiety played a negative moderating role in the relationship between PSS and SE.


Assuntos
COVID-19 , Estudantes de Enfermagem , Humanos , COVID-19/epidemiologia , Pandemias , Estudantes de Enfermagem/psicologia , Autoeficácia , Estudos Transversais , Ansiedade/epidemiologia , Apoio Social
16.
Sensors (Basel) ; 23(16)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37631684

RESUMO

Phase-shift profilometry (PSP) holds great promise for high-precision 3D shape measurements. However, in the case of measuring moving objects, as PSP requires multiple images to calculate the phase, the movement of the object causes artifacts in the measurement, which in turn has a significant impact on the accuracy of the 3D surface measurement. Therefore, we propose a method to reduce motion artifacts using feature information in the image and simulate it using the six-step term shift method as a case study. The simulation results show that the phase of the object is greatly affected when the object is in motion and that the phase shift due to motion can be effectively reduced using this method. Finally, artifact optimization was carried out by way of specific copper tube vibration experiments at a measurement frequency of 320 Hz. The experimental results prove that the method is well implemented.

17.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835655

RESUMO

The brain-gut axis (BGA) is a significant bidirectional communication pathway between the brain and gut. Traumatic brain injury (TBI) induced neurotoxicity and neuroinflammation can affect gut functions through BGA. N6-methyladenosine (m6A), as the most popular posttranscriptional modification of eukaryotic mRNA, has recently been identified as playing important roles in both the brain and gut. However, whether m6A RNA methylation modification is involved in TBI-induced BGA dysfunction is not clear. Here, we showed that YTHDF1 knockout reduced histopathological lesions and decreased the levels of apoptosis, inflammation, and oedema proteins in brain and gut tissues in mice after TBI. We also found that YTHDF1 knockout improved fungal mycobiome abundance and probiotic (particularly Akkermansia) colonization in mice at 3 days post-CCI. Then, we identified the differentially expressed genes (DEGs) in the cortex between YTHDF1-knockout and WT mice. These genes were primarily enriched in the regulation of neurotransmitter-related neuronal signalling pathways, inflammatory signalling pathways, and apoptotic signalling pathways. This study reveals that the ITGA6-mediated cell adhesion molecule signalling pathway may be the key feature of m6A regulation in TBI-induced BGA dysfunction. Our results suggest that YTHDF1 knockout could attenuate TBI-induced BGA dysfunction.


Assuntos
Lesões Encefálicas Traumáticas , Eixo Encéfalo-Intestino , Proteínas de Ligação a RNA , Animais , Camundongos , Encéfalo/patologia , Lesões Encefálicas Traumáticas/patologia , Córtex Cerebral/patologia , Inflamação/patologia , Proteínas de Ligação a RNA/metabolismo
18.
Kidney Int ; 102(4): 828-844, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35752325

RESUMO

The novel biomarker, insulin-like growth factor binding protein 7 (IGFBP7), is used clinically to predict different types of acute kidney injury (AKI) and has drawn significant attention as a urinary biomarker. However, as a secreted protein in the circulation of patients with AKI, it is unclear whether IGFBP7 acts as a key regulator in AKI progression, and if mechanisms underlying its upregulation still need to be determined. Here we found that IGFBP7 is highly expressed in the blood and urine of patients and mice with AKI, possibly via a c-Jun-dependent mechanism, and is positively correlated with kidney dysfunction. Global knockout of IGFBP7 ameliorated kidney dysfunction, inflammatory responses, and programmed cell death in murine models of cisplatin-, kidney ischemia/reperfusion-, and lipopolysaccharide-induced AKI. IGFBP7 mainly originated from kidney tubular epithelial cells. Conditional knockout of IGFBP7 from the kidney protected against AKI. By contrast, rescue of IGFBP7 expression in IGFBP7-knockout mice restored kidney damage and inflammation. IGFBP7 function was determined in vitro using recombinant IGFBP7 protein, IGFBP7 knockdown, or overexpression. Additionally, IGFBP7 was found to bind to poly [ADP-ribose] polymerase 1 (PARP1) and inhibit its degradation by antagonizing the E3 ubiquitin ligase ring finger protein 4 (RNF4). Thus, IGFBP7 in circulation acts as a biomarker and key mediator of AKI by inhibiting RNF4/PARP1-mediated tubular injury and inflammation. Hence, over-activation of the IGFBP7/PARP1 axis represents a promising target for AKI treatment.


Assuntos
Injúria Renal Aguda , Inibidor Tecidual de Metaloproteinase-2 , Adenosina Difosfato Ribose , Animais , Biomarcadores , Cisplatino/toxicidade , Inflamação , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Lipopolissacarídeos , Camundongos , Camundongos Knockout , Ubiquitina-Proteína Ligases/metabolismo
19.
Plant Biotechnol J ; 20(10): 2023-2035, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35781755

RESUMO

Thermosensitive genic male sterility (TGMS) lines serve as the major genetic resource for two-line hybrid breeding in rice. However, their unstable sterility under occasional low temperatures in summer highly limits their application. In this study, we identified a novel rice TGMS line, ostms18, of cultivar ZH11 (Oryza sativa ssp. japonica). ostms18 sterility is more stable in summer than the TGMS line carrying the widely used locus tms5 in the ZH11 genetic background, suggesting its potential application for rice breeding. The ostms18 TGMS trait is caused by the point mutation from Gly to Ser in a glucose-methanol-choline (GMC) oxidoreductase; knockout of the oxidoreductase was previously reported to cause complete male sterility. Cellular analysis revealed the pollen wall of ostms18 to be defective, leading to aborted pollen under high temperature. Further analysis showed that the tapetal transcription factor OsMS188 directly regulates OsTMS18 for pollen wall formation. Under low temperature, the flawed pollen wall in ostms18 is sufficient to protect its microspore, allowing for development of functional pollen and restoring fertility. We identified the orthologous gene in Arabidopsis. Although mutants for the gene were fertile under normal conditions (24°C), fertility was significantly reduced under high temperature (28°C), exhibiting a TGMS trait. A cellular mechanism integrated with genetic mutations and different plant species for fertility restoration of TGMS lines is proposed.


Assuntos
Arabidopsis , Oryza , Oxirredutases , Infertilidade das Plantas , Pólen , Arabidopsis/genética , Arabidopsis/fisiologia , Colina/metabolismo , Glucose/metabolismo , Metanol/metabolismo , Mutação , Oryza/genética , Oryza/fisiologia , Oxirredutases/genética , Infertilidade das Plantas/genética , Pólen/genética , Pólen/crescimento & desenvolvimento , Temperatura , Fatores de Transcrição/genética
20.
Langmuir ; 38(25): 7733-7739, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35709528

RESUMO

Recently, a ternary-layered material BiOCl has elicited intense interest in photocatalysis, environmental remediation, and ultraviolet light detection because of its unique band gap of around 3.6 eV, low toxicity, and earth abundance. In particular, Gibson et al. reported a measurement of the in-plane thermal conductivity of BiOCl experimentally using a four-point-probe method [Science, 373, 1017-1022 (2021)], which is only 1.25 W/m K at 300 K. Motivated by the work, we studied the thermoelectric property of monolayer BiOCl using first-principles calculations combined with the Boltzmann transport equation. The calculated phonon thermal conductivity of monolayer BiOCl is 3 W/m K at 300 K, which is far below that of other promising 2D thermoelectric materials like graphyne and MoS2. A comprehensive analysis of phonon modes is conducted to reveal the low thermal conductivity. Moreover, the maximal ZT value is as high as 1.8 at 300 K and 5.7 at 800 K for the p-type doping with the 2 × 1015 cm-2 concentration. More importantly, we found that the thermoelectric efficiency of such 2D materials is significantly enhanced to 8 at 800 K by applying 1.5% tensile strain, which clearly outperforms that of the reported 2D thermoelectric material SnSe. The results shed light on the promising application in medium-temperature (600-900 K) thermoelectric devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa