Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37306388

RESUMO

The eIF4E family of translation initiation factors bind 5' methylated caps and act as the limiting step for mRNA translation. The canonical eIF4E1A is required for cell viability, yet other related eIF4E families exist and are utilized in specific contexts or tissues. Here, we describe a family called Eif4e1c, for which we find roles during heart development and regeneration in zebrafish. The Eif4e1c family is present in all aquatic vertebrates but is lost in all terrestrial species. A core group of amino acids shared over 500 million years of evolution forms an interface along the protein surface, suggesting that Eif4e1c functions in a novel pathway. Deletion of eif4e1c in zebrafish caused growth deficits and impaired survival in juveniles. Mutants surviving to adulthood had fewer cardiomyocytes and reduced proliferative responses to cardiac injury. Ribosome profiling of mutant hearts demonstrated changes in translation efficiency of mRNA for genes known to regulate cardiomyocyte proliferation. Although eif4e1c is broadly expressed, its disruption had most notable impact on the heart and at juvenile stages. Our findings reveal context-dependent requirements for translation initiation regulators during heart regeneration.


Assuntos
Traumatismos Cardíacos , Miócitos Cardíacos , Animais , Peixe-Zebra/genética , Fator de Iniciação 4E em Eucariotos/genética , Proliferação de Células/genética
2.
Molecules ; 28(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570753

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory disease significantly impacting patients' lives. This study aimed to elucidate the alleviating effect of ethyl acetate extract (TBEA) from Terminalia bellirica fruit on UC and to explore its mechanism. TBEA was the fraction with the best anti-inflammatory activity screened using in vitro anti-inflammatory assays, and HPLC initially characterized its composition. The mice model of ulcerative colitis was established after free drinking of 2.5% dextran sulfate sodium for six days, and the experimental group was treated with 50 mg/kg and 100 mg/kg TBEA for seven days. We found that TBEA significantly alleviated symptoms in UC mice, including a physiologically significant reduction in disease activity index and pathological damage to colonic tissue. TBEA dramatically slowed down oxidative stress and inflammatory process in UC mice, as evidenced by decreasing myeloperoxidase and malondialdehyde activities and increasing glutathione and catalase levels by reducing the concentrations of IL-6, IL-1ß, TNF-α, and NO in UC mice, as well as by regulating key proteins in the IL-6/JAK2/STAT3 pathway. Meanwhile, TBEA maintained intestinal homeostasis by regulating intestinal flora structure. Our study provides new ideas for developing TBEA into a new drug to treat UC.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Terminalia , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Citocinas/metabolismo , Terminalia/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Frutas/metabolismo , Colo/metabolismo , Anti-Inflamatórios/uso terapêutico , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colite/tratamento farmacológico
3.
Molecules ; 28(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175119

RESUMO

This research aimed to investigate natamycin's antifungal effect and its mechanism against the chestnut pathogen Neofusicoccum parvum. Natamycin's inhibitory effects on N. parvum were investigated using a drug-containing plate culture method and an in vivo assay in chestnuts and shell buckets. The antifungal mechanism of action of natamycin on N. parvum was investigated by conducting staining experiments of the fungal cell wall and cell membrane. Natamycin had a minimum inhibitory concentration (MIC) of 100 µg/mL and a minimum fungicidal concentration (MFC) of 200 µg/mL against N. parvum. At five times the MFC, natamycin had a strong antifungal effect on chestnuts in vivo, and it effectively reduced morbidity and extended the storage period. The cell membrane was the primary target of natamycin action against N. parvum. Natamycin inhibits ergosterol synthesis, disrupts cell membranes, and causes intracellular protein, nucleic acid, and other macromolecule leakages. Furthermore, natamycin can cause oxidative damage to the fungus, as evidenced by decreased superoxide dismutase and catalase enzyme activity. Natamycin exerts a strong antifungal effect on the pathogenic fungus N. parvum from chestnuts, mainly through the disruption of fungal cell membranes.


Assuntos
Ascomicetos , Natamicina , Natamicina/farmacologia , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana
4.
Cerebellum ; 21(3): 358-367, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34264505

RESUMO

Spinocerebellar ataxias (SCAs) are a large group of hereditary neurodegenerative diseases characterized by ataxia and dysarthria. Due to high clinical and genetic heterogeneity, many SCA families are undiagnosed. Herein, using linkage analysis, WES, and RP-PCR, we identified the largest SCA36 pedigree in Asia. This pedigree showed some distinct clinical characteristics. Cognitive impairment and gaze palsy are common and severe in SCA36 patients, especially long-course patients. Although no patients complained of hearing loss, most of them presented with hearing impairment in objective auxiliary examination. Voxel-based morphometry (VBM) demonstrated a reduction of volumes in cerebellum, brainstem, and thalamus (corrected P < 0.05). Reduced volumes in cerebellum were also found in presymptomatic carriers. Resting-state functional MRI (R-fMRI) found reduced ReHo values in left cerebellar posterior lobule (corrected P < 0.05). Diffusion tensor imaging (DTI) demonstrated a reduction of FA values in cerebellum, midbrain, superior and inferior cerebellar peduncle (corrected P < 0.05). MRS found reduced NAA/Cr values in cerebellar vermis and hemisphere (corrected P < 0.05). Our findings could provide new insights into management of SCA36 patients. Detailed auxiliary examination are recommended to assess hearing or peripheral nerve impairment, and we should pay more attention to eye movement and cognitive changes in patients. Furthermore, for the first time, our multimodel neuroimaging evaluation generate a full perspective of brain function and structure in SCA36 patients.


Assuntos
Imagem de Tensor de Difusão , Ataxias Espinocerebelares , Cerebelo , Humanos , Imageamento por Ressonância Magnética , Linhagem , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética
5.
J Sci Food Agric ; 101(10): 4321-4331, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33417244

RESUMO

BACKGROUND: The levels and ratios of sugar and acid are important contributors to fruit taste. Kumquat is one of the most economically important citrus crops, but information on the soluble sugar and organic acid metabolism in kumquat is limited. Here, two kumquat varieties - 'Rongan' (RA) and its mutant 'Huapi' (HP) - were used to assess soluble sugar and organic acid accumulation and the related genes. RESULTS: Soluble sugars include sucrose, glucose and fructose, while malate, quinic acid and citrate are the dominant organic acids in the fruits of both kumquat varieties. HP accumulated more sugars but fewer organic acids than did RA. Transcriptome analysis revealed 63 and 40 differentially expressed genes involved in soluble sugar and organic acid accumulation, respectively. The genes associated with sugar synthesis and transport, including SUS, SPS, TST, STP and ERD6L, were up-regulated, whereas INVs, FRK and HXK genes related to sugar degradation were down-regulated in HP kumquat. For organic acids, the up-regulation of PEPC and NAD-MDH could accelerate malate accumulation. In contrast, high expression of NAD-IDH and GS resulted in citric acid degradation during HP fruit development. Additionally, the PK, PDH, PEPCK and FBPase genes responsible for the interconversion of soluble sugars and organic acids were also significantly altered in the early development stages in HP. CONCLUSION: The high sugar accumulation in HP fruit was associated with up-regulation of SUS, SPS, TST, STP and ERD6L genes. The PEPCK, PEPC, NAD-MDH, NADP-IDH, GS and FBPase genes played important roles in acid synthesis and degradation in HP kumquat. These findings provide further insight into understanding the mechanisms underlying metabolism of sugars and organic acids in citrus. © 2021 Society of Chemical Industry.


Assuntos
Ácidos/metabolismo , Frutas/metabolismo , Proteínas de Plantas/genética , Rutaceae/genética , Açúcares/metabolismo , Ácidos/análise , Ácido Cítrico/metabolismo , Frutas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malatos/metabolismo , Proteínas de Plantas/metabolismo , Rutaceae/metabolismo
6.
Hum Genet ; 139(11): 1391-1401, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32440726

RESUMO

Cone-rod dystrophy (CORD) is an inherited retinal degenerative disease characterized by progressive loss of cone and rod photoreceptors. Although several genes have been reported to cause autosomal dominant CORD (adCORD), the genetic causes of adCORD have not been fully elucidated. Here, we identified the ATP1A3 gene, encoding the α3 subunit of Na+, K+-ATPase, as a novel gene associated with adCORD. Using whole-exome sequencing (WES), we found a candidate mutation of ATP1A3 that co-segregated with the disease in an analysis of two affected patients and one healthy relative in an adCORD family. According to our RNA-seq data, we demonstrated that the Atp1a3 mRNA level was extremely high in the murine retina. Overexpression of mutant ATP1A3 in vitro led to a reduced oxygen consumption rate (OCR), reflecting the limited mitochondrial reserve capacity. Furthermore, we generated transgenic mice expressing the ATP1A3 cDNA with patient variant and found decreased electroretinogram (ERG) responses. Moreover, the mutant ATP1A3 is highly expressed in photoreceptor inner segment, where mitochondria are enriched. These results suggest that the ATP1A3 mutation is a new genetic cause responsible for adCORD and indicate that ATP1A3 plays an important role in retinal function.


Assuntos
Distrofias de Cones e Bastonetes/genética , Genes Dominantes/genética , Mutação/genética , ATPase Trocadora de Sódio-Potássio/genética , Adulto , Animais , Linhagem Celular Tumoral , Eletrorretinografia/métodos , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Linhagem , Fenótipo , Retina/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/genética , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/genética , Acuidade Visual , Sequenciamento do Exoma/métodos , Adulto Jovem
7.
PLoS Biol ; 15(1): e2001402, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28081144

RESUMO

A new wave of portable biosensors allows frequent measurement of health-related physiology. We investigated the use of these devices to monitor human physiological changes during various activities and their role in managing health and diagnosing and analyzing disease. By recording over 250,000 daily measurements for up to 43 individuals, we found personalized circadian differences in physiological parameters, replicating previous physiological findings. Interestingly, we found striking changes in particular environments, such as airline flights (decreased peripheral capillary oxygen saturation [SpO2] and increased radiation exposure). These events are associated with physiological macro-phenotypes such as fatigue, providing a strong association between reduced pressure/oxygen and fatigue on high-altitude flights. Importantly, we combined biosensor information with frequent medical measurements and made two important observations: First, wearable devices were useful in identification of early signs of Lyme disease and inflammatory responses; we used this information to develop a personalized, activity-based normalization framework to identify abnormal physiological signals from longitudinal data for facile disease detection. Second, wearables distinguish physiological differences between insulin-sensitive and -resistant individuals. Overall, these results indicate that portable biosensors provide useful information for monitoring personal activities and physiology and are likely to play an important role in managing health and enabling affordable health care access to groups traditionally limited by socioeconomic class or remote geography.


Assuntos
Técnicas Biossensoriais , Eletrônica Médica , Saúde , Modelagem Computacional Específica para o Paciente , Ritmo Circadiano/fisiologia , Eletrônica Médica/instrumentação , Humanos , Inflamação/diagnóstico , Insulina/metabolismo , Resistência à Insulina , Oxigênio/metabolismo , Pressão Parcial , Medicina de Precisão , Radiação , Reprodutibilidade dos Testes
8.
J Immunol ; 201(1): 157-166, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29760195

RESUMO

Human Ag R (HuR) is an RNA binding protein in the ELAVL protein family. To study the neuron-specific function of HuR, we generated inducible, neuron-specific HuR-deficient mice of both sexes. After tamoxifen-induced deletion of HuR, these mice developed a phenotype consisting of poor balance, decreased movement, and decreased strength. They performed significantly worse on the rotarod test compared with littermate control mice, indicating coordination deficiency. Using the grip-strength test, it was also determined that the forelimbs of neuron-specific HuR-deficient mice were much weaker than littermate control mice. Immunostaining of the brain and cervical spinal cord showed that HuR-deficient neurons had increased levels of cleaved caspase-3, a hallmark of cell apoptosis. Caspase-3 cleavage was especially strong in pyramidal neurons and α motor neurons of HuR-deficient mice. Genome-wide microarray and real-time PCR analysis further indicated that HuR deficiency in neurons resulted in altered expression of genes in the brain involved in cell growth, including trichoplein keratin filament-binding protein, Cdkn2c, G-protein signaling modulator 2, immediate early response 2, superoxide dismutase 1, and Bcl2. The additional enriched Gene Ontology terms in the brain tissues of neuron-specific HuR-deficient mice were largely related to inflammation, including IFN-induced genes and complement components. Importantly, some of these HuR-regulated genes were also significantly altered in the brain and spinal cord of patients with amyotrophic lateral sclerosis. Additionally, neuronal HuR deficiency resulted in the redistribution of TDP43 to cytosolic granules, which has been linked to motor neuron disease. Taken together, we propose that this neuron-specific HuR-deficient mouse strain can potentially be used as a motor neuron disease model.


Assuntos
Caspase 3/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína Semelhante a ELAV 1/genética , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/patologia , Neurônios Motores/patologia , Esclerose Lateral Amiotrófica/genética , Animais , Ataxia/genética , Células Cultivadas , Modelos Animais de Doenças , Feminino , Força da Mão/fisiologia , Humanos , Masculino , Camundongos , Camundongos Knockout
9.
Proc Natl Acad Sci U S A ; 114(24): 6376-6381, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28559309

RESUMO

MicroRNAs (miRNAs) are known to be essential for retinal maturation and functionality; however, the role of the most abundant miRNAs, the miR-183/96/182 cluster (miR-183 cluster), in photoreceptor cells remains unclear. Here we demonstrate that ablation of two components of the miR-183 cluster, miR-183 and miR-96, significantly affects photoreceptor maturation and maintenance in mice. Morphologically, early-onset dislocated cone nuclei, shortened outer segments and thinned outer nuclear layers are observed in the miR-183/96 double-knockout (DKO) mice. Abnormal photoreceptor responses, including abolished photopic electroretinography (ERG) responses and compromised scotopic ERG responses, reflect the functional changes in the degenerated retina. We further identify Slc6a6 as the cotarget of miR-183 and miR-96. The expression level of Slc6a6 is significantly higher in the DKO mice than in the wild-type mice. In contrast, Slc6a6 is down-regulated by adeno-associated virus-mediated overexpression of either miR-183 or miR-96 in wild-type mice. Remarkably, both silencing and overexpression of Slc6a6 in the retina are detrimental to the electrophysiological activity of the photoreceptors in response to dim light stimuli. We demonstrate that miR-183/96-mediated fine-tuning of Slc6a6 expression is indispensable for photoreceptor maturation and maintenance, thereby providing insight into the epigenetic regulation of photoreceptors in mice.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Animais , Visão de Cores/fisiologia , Eletrorretinografia , Epigênese Genética , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Visão Noturna/fisiologia , Células Fotorreceptoras de Vertebrados/patologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia
10.
Ecotoxicol Environ Saf ; 179: 249-256, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31054378

RESUMO

The functional role of 1,25-vitamin D3 in cooking oil fumes (COFs)-derived PM2.5-induced cell damage is largely unexplored. The present study investigated the protective role of 1,25-vitamin D3 against cell injury by possible involvement of JAK/STAT and NF-κB signaling pathways in cardiomyocytes. Cell viability was measured using CCK-8 assay, and cell apoptosis was analyzed by flow cytometry, qRT-PCR and Western blot in cultured rat neonatal cardiomyocytes treated with 1,25-vitamin D3 and COFs-derived PM2.5. Expressions of JAK/STAT and NF-κB signaling pathway were measured by Western blot. The results suggested that treatment with COFs-derived PM2.5 significantly decreased cell viability and increased apoptosis and oxidative stress in cultured rat neonatal cardiomyocytes. 1,25-vitamin D3 pretreatment alleviated the cell injury by increasing cell viability and decreasing apoptosis in the cardiomyocytes. 1,25-vitamin D3 pretreatment also decreased the ROS level and inflammation in the cardiomyocytes. Furthermore, 1,25-vitamin D3 pretreatment alleviated COFs-derived PM2.5-evoked elevation of JAK/STAT and NF-κB signaling pathways. Our study showed that 1,25-vitamin D3 pretreatment protected cardiomyocytes from COFs-derived PM2.5-induced injury by decreasing ROS, apoptosis and inflammation level via activations of the JAK/STAT and NF-κB signaling pathways.


Assuntos
Poluentes Atmosféricos/toxicidade , Anti-Inflamatórios/farmacologia , Colecalciferol/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Material Particulado/toxicidade , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Culinária/métodos , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Ratos , Transdução de Sinais/efeitos dos fármacos
11.
Int J Mol Sci ; 20(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683503

RESUMO

Long non-coding RNAs (lncRNAs) play important roles in plant growth and stress responses. As a dominant abiotic stress factor in soil, boron (B) deficiency stress has impacted the growth and development of citrus in the red soil region of southern China. In the present work, we performed a genome-wide identification and characterization of lncRNAs in response to B deficiency stress in the leaves of trifoliate orange (Poncirus trifoliata), an important rootstock of citrus. A total of 2101 unique lncRNAs and 24,534 mRNAs were predicted. Quantitative real-time polymerase chain reaction (qRT-PCR) experiments were performed for a total of 16 random mRNAs and lncRNAs to validate their existence and expression patterns. Expression profiling of the leaves of trifoliate orange under B deficiency stress identified 729 up-regulated and 721 down-regulated lncRNAs, and 8419 up-regulated and 8395 down-regulated mRNAs. Further analysis showed that a total of 84 differentially expressed lncRNAs (DELs) were up-regulated and 31 were down-regulated, where the number of up-regulated DELs was 2.71-fold that of down-regulated. A similar trend was also observed in differentially expressed mRNAs (DEMs, 4.21-fold). Functional annotation of these DEMs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, and the results demonstrated an enrichment of the categories of the biosynthesis of secondary metabolites (including phenylpropanoid biosynthesis/lignin biosynthesis), plant hormone signal transduction and the calcium signaling pathway. LncRNA target gene enrichment identified several target genes that were involved in plant hormones, and the expression of lncRNAs and their target genes was significantly influenced. Therefore, our results suggest that lncRNAs can regulate the metabolism and signal transduction of plant hormones, which play an important role in the responses of citrus plants to B deficiency stress. Co-expression network analysis indicated that 468 significantly differentially expressed genes may be potential targets of 90 lncRNAs, and a total of 838 matched lncRNA-mRNA pairs were identified. In summary, our data provides a rich resource of candidate lncRNAs and mRNAs, as well as their related pathways, thereby improving our understanding of the role of lncRNAs in response to B deficiency stress, and in symptom formation caused by B deficiency in the leaves of trifoliate orange.


Assuntos
Boro/metabolismo , Genoma de Planta/genética , Folhas de Planta/genética , Poncirus/genética , RNA Longo não Codificante/genética , RNA de Plantas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes Reguladoras de Genes , Microscopia Eletrônica , Reguladores de Crescimento de Plantas/biossíntese , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Poncirus/metabolismo , Poncirus/ultraestrutura , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Fisiológico
12.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 40(4): 501-509, 2018 Aug 30.
Artigo em Zh | MEDLINE | ID: mdl-30193604

RESUMO

Objective To analyze the routine and functional magnetic resonance imaging(MRI) features and their potential pathological mechanisms of Hashimoto's encephalopathy(HE). Methods The clinical data and routine and functional MRI images of 30 HE patients who were treated in our center from January 2010 to April 2017 were retrospectively reviewed. Among them,15 patients were examined with contrast-enhanced MRI,16 with diffusion-weighed imaging(DWI),8 with magnetic resonance angiography,2 with magnetic resonance spectroscopy,and 1 with both arterial spin labeled perfusion imaging and diffusion tensor imaging. Seven patients had consecutive clinical and imaging data. The distribution,MRI signals,and functional MRI features of HE were analyzed. Results Among 30 HE patients,routine MRI showed negative results in 8 cases and abnormal findings in 22 cases. Among 22 abnormal cases,9 were characterized by small cerebral vascular disease and 13 had non-specific abnormalities;of these 13 cases,12 had lesions mainly located at the supratentorial white matter,11 had multiple lesions,and 2 had lesions complicated with cerebellum atrophy. The lesions were focal or confluent,punctate or small patchy,showing abnormal signal intensity with iso-or hypo-intensity on T1-weighed imaging,hyper-intensity on both T2-weighed imaging and fluid-attenuated inversion recovery. Most of the lesions had no enhancement(12/15). Among 7 cases with abnormalities on DWI,hyper-intensity on DWI and hypo-intensity on apparent diffusion coefficient were seen in 3 sudden acute cases and hyper-intensity on DWI and increased apparent diffusion coefficient value in 4 sub-acute or slow onset cases. Three cases showed localized intracranial artery stenosis. In 2 cases,magnetic resonance spectroscopy revealed significant lower N-acetylaspartate peak,higher choline peak,and visible lactate peak or lipid peak. Of 7 cases with follow-up data,3 cases had no change,4 cases had changes including softening lesions(2/4),remitted and relapsed lesions(1/4),and rapid progression of brain atrophy with negative finding on the initial MRI(1/4). Conclusion Routine MRI combined with functional imaging can show the features of HE from different perspectives. Routine MRI shows multifocal or confluent lesions in the white matter,mostly without enhancement,while functional imaging may reveal pathological characteristics of different phases of acute or chronic ischemia and demyelinating changes of HE. Combined with clinical data,MRI can differentiate HE from other diseases based on routine and functional MRI appearances.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Encefalite/diagnóstico por imagem , Doença de Hashimoto/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/patologia , Encefalite/patologia , Doença de Hashimoto/patologia , Humanos , Estudos Retrospectivos
14.
Zhongguo Dang Dai Er Ke Za Zhi ; 18(12): 1269-1271, 2016 Dec.
Artigo em Zh | MEDLINE | ID: mdl-27974120

RESUMO

OBJECTIVE: To investigate the features and duration of viral nucleic acid shedding in children with influenza A. METHODS: The clinical data of 90 children with influenza A with positive influenza A virus nucleic acid in nasopharyngeal swab detected by PCR were collected, and these children were divided into simple influenza A group (n=10), influenza A-pneumonia group (n=61), influenza A-nervous system damage group (n=10), and influenza A-underlying disease group (n=9). A retrospective analysis was performed for clinical features, treatment process, duration of viral nucleic acid shedding, and prognosis. RESULTS: The most common symptoms in these children were fever (89/90, 99%), cough (89/90, 99%), running nose (69/90, 77%), shortness of breath (26/90, 29%), and myalgia (23/90, 26%). The mean duration of viral nucleic acid shedding in 90 children was 9.4±2.9 days. The simple influenza A group had a significantly shorter duration of viral nucleic acid shedding than the influenza A-pneumonia, influenza A-nervous system damage, and influenza A-underlying disease groups (p<0.05), while there were no significant differences between the influenza A-pneumonia, influenza A-nervous system damage, and influenza A-underlying disease groups (p>0.05). The children who received antiviral therapy within 48 hours after disease onset had significantly shorter duration of viral nucleic acid shedding and time to body temperature recovery than those who received antiviral therapy more than 48 hours after disease onset (p<0.05). Of all the children with body temperature recovery, 83% still tested positive for viral nucleic acid. CONCLUSIONS: Complications, underlying diseases, and timing of antiviral therapy are influencing factors for the duration of influenza A virus nucleic acid shedding, and whether body temperature returns to normal cannot be used to decide whether to continue antiviral therapy.


Assuntos
Vírus da Influenza A/isolamento & purificação , Influenza Humana/virologia , Ácidos Nucleicos/metabolismo , Eliminação de Partículas Virais , Criança , Pré-Escolar , Feminino , Febre/etiologia , Humanos , Lactente , Masculino , Estudos Retrospectivos , Fatores de Tempo
16.
BMC Cancer ; 14: 835, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25407966

RESUMO

BACKGROUND: EBV-encoded latent membrane protein 1 (EBV-LMP1) is an important oncogenic protein for nasopharyngeal carcinoma (NPC) and has been shown to engage a plethora of signaling pathways. Correspondingly, an LMP1-targeted DNAzyme was found to inhibit the growth of NPC cells both in vivo and in vitro by suppressing cell proliferation and inducing apoptosis. However, it remains unknown whether an LMP1-targeted DNAzyme would affect the vasculature of NPC. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been applied in the clinical trials of anti-angiogenic drugs for more than ten years, and Ktrans has been recommended as a primary endpoint. Therefore, the objective of the current study was to use DCE-MRI to longitudinally study the effect of an EBV-LMP1-targeted DNAzyme on the vasculature of patients with NPC. METHODS: Twenty-four patients were randomly divided into two groups: a combined treatment group (radiotherapy + LMP1-targeted DNAzyme) and a radiotherapy alone group (radiotherapy + normal saline). DCE-MRI scans were conducted 1 ~ 2 days before radiotherapy (Pre-RT), during radiotherapy (RT 50 Gy), upon completion of radiotherapy (RT 70 Gy), and three months after radiotherapy (3 months post-RT). Parameters of vascular permeability and intra- and extravascular volumes were subsequently obtained (e.g., Ktrans, kep, ve) using nordicICE software. RESULTS: Both Ktrans and kep values for NPC tumor tissues decreased for both groups after treatment. Moreover, a statistically significant difference in Ktrans values at the pre-therapy and post-therapy timepoints emerged earlier for the combined treatment group (RT 50 Gy, P =0.045) compared to the radiotherapy alone group (3 months post-RT, P = 0.032). For the kep values, the downward trend observed for both the combined treatment group and the radiotherapy alone group were similar. In contrast, ve values for all of the tumor tissues increased following therapy. CONCLUSIONS: The EBV-LMP1-targeted DNAzyme that was tested was found to accelerate the decline of Ktrans values for patients with NPC. Correspondingly, the LMP1-targeted DNAzyme treatments were found to affect the angiogenesis and microvascular permeability of NPC. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01449942. Registered 6 October 2011.


Assuntos
DNA Catalítico/administração & dosagem , DNA Catalítico/genética , Imageamento por Ressonância Magnética/métodos , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/genética , Neovascularização Patológica/genética , Proteínas da Matriz Viral/genética , Adulto , Carcinoma , Estudos de Coortes , Terapia Combinada , DNA Catalítico/efeitos adversos , Regulação para Baixo , Feminino , Regulação da Expressão Gênica , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/terapia , Estadiamento de Neoplasias , Neovascularização Patológica/diagnóstico , Radioterapia/efeitos adversos , Resultado do Tratamento
17.
bioRxiv ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38979253

RESUMO

Moderating the pool of active ribosomal subunits is critical for maintaining global translation rates. A factor crucial for modulating the 60S ribosomal subunits is eukaryotic translation initiation factor 6. Release of eIF6 from 60S is essential to permit 60S interactions with 40S. Here, using the N106S mutant of eIF6, we show that disrupting eIF6 interaction with 60S leads to an increase in vacant 80S. It further highlights a dichotomy in the anti-association activity of eIF6 that is distinct from its role in 60S biogenesis and shows that the nucleolar localization of eIF6 is not dependent on uL14-BCCIP interactions. Limiting active ribosomal pools markedly deregulates translation especially in mitosis and leads to chromosome segregation defects, mitotic exit delays and mitotic catastrophe. Ribo-Seq analysis of the eIF6-N106S mutant shows a significant downregulation in the translation efficiencies of mitotic factors and specifically transcripts with long 3'UTRs. eIF6-N106S mutation also limits cancer invasion, and this role is correlated with the overexpression of eIF6 only in high-grade invasive cancers suggesting that deregulation of eIF6 is probably not an early event in cancers. Thus, this study highlights the segregation of eIF6 functions and its role in moderating 80S availability for mitotic translation and cancer progression.

18.
PNAS Nexus ; 2(6): pgad167, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37275262

RESUMO

A major cause for childhood blindness worldwide is attributed to nutritional vitamin A deficiency. Surprisingly, the molecular basis of the ensuing retinal degeneration has not been well defined. Abundant expression of the retinoid transporter STRA6 in the retinal pigment epithelium (RPE) and homeostatic blood levels of retinol-binding protein delay vitamin A deprivation of the mouse eyes. Hence, genetic dissection of STRA6 makes mice susceptible to nutritional manipulation of ocular retinoid status. We performed RNA-seq analyses and complemented the data with tests of visual physiology, ocular morphology, and retinoid biochemistry to compare eyes with different vitamin A status. Mild ocular vitamin A deficiency decreased transcripts of photoreceptor transduction pathway-related genes and increased transcripts of oxidative stress pathways. The response was associated with impaired visual sensitivity and an accumulation of fluorescent debris in the retina. Severe vitamin A deficiency did not only impair visual perception but also decreased transcripts of genes encoding cell adhesion and cellular junction proteins. This response altered cell morphology, resulted in significant changes in transport pathways of small molecules, and compromised the barrier function of the RPE. Together, our analyses characterize the molecular events underlying nutritional blindness in a novel mouse model and indicate that breakdown of the outer blood-retinal barrier contributes to retinal degeneration and photoreceptor cell death in severe vitamin A deficiency.

19.
Front Pharmacol ; 14: 1229772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152693

RESUMO

Background: The Chinese pharmacopeia records Terminalia chebula as effective in treating prolonged diarrhea and dysentery, blood in the stool, and prolapse. Modern pharmacological research proves it has multiple pharmacological benefits, including antioxidant, anti-inflammatory, analgesic, hepatoprotective, neuroprotective, and other properties. Objectives: This study aims to clarify the role of Terminalia chebula's ethyl acetate extract (TCEA) on ulcerative colitis (UC) induced by dextran sodium sulfate (DSS) in mice, as well as explore the potential mechanism of action. Materials and methods: The variation of different extracts of T. chebula was detected using the HPLC technique, and the main components in TCEA were identified. DSS was used to establish a mouse model to mimic the physiological state of UC in humans; the alleviating effect of TCEA and positive control 5-ASA on UC mice were evaluated by gavage treatment. Disease progression was assessed by monitoring the mouse's weight change and disease activity index (DAI). The changes in colon tissue were estimated by measuring colon length, HE, and AB-PAS staining and detecting oxidative stress parameters. The results draw from Western blot and real-time PCR showed the TLR4/MyD88/NF-κB pathway may involve in the anti-inflammatory activity of TCEA. Furthermore, the gut flora sequencing technique was employed to monitor the differentiation of intestinal microbiota of mice induced by DSS and TCEA treatment. Results: TCEA significantly lowered DAI scores and inhibited the weight loss and colonic shortening induced by DSS. The colon histomorphology and oxidative stress levels were enhanced after TCEA treatment compared with DSS induced UC group. TCEA attenuated the inflammatory response by regulating TLR4/MyD88/NF-κB pathway activation. Intestinal flora sequencing showed that DSS and TCEA greatly impacted mice's composition and diversity of intestinal microorganisms. But TCEA increased the abundance of Bacteroidetes and decreased the abundance of Firmicutes and Proteobacteria compared with the DSS group, which contributed a lot to returning the intestinal flora to a balanced state. Conclusion: This study confirms the alleviating effect of TCEA on UC and provides new ideas for developing TCEA into a new drug to treat UC.

20.
Cancer Gene Ther ; 30(8): 1156-1166, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37231059

RESUMO

Extracellular vesicles (EVs) play a crucial role in regulating cell behavior by delivering their cargo to target cells. However, the mechanisms underlying EV-cell interactions are not well understood. Previous studies have shown that heparan sulfate (HS) on target cell surfaces can act as receptors for exosomes uptake, but the ligand for HS on EVs has not been identified. In this study, we isolated EVs from glioma cell lines and glioma patients and identified Annexin A2 (AnxA2) on EVs as a key HS-binding ligand and mediator of EV-cell interactions. Our findings suggest that HS plays a dual role in EV-cell interactions, where HS on EVs captures AnxA2, and on target cells, it acts as a receptor for AnxA2. Removal of HS from the EV surface inhibits EV-target cell interaction by releasing AnxA2. Furthermore, we found that AnxA2-mediated binding of EVs to vascular endothelial cells promotes angiogenesis, and that antibody against AnxA2 inhibited the ability of glioma-derived EVs to stimulate angiogenesis by reducing the uptake of EVs. Our study also suggests that the AnxA2-HS interaction may accelerate the glioma-derived EVs-mediated angiogenesis and that combining AnxA2 on glioma cells with HS on endothelial cells may effectively improve the prognosis evaluation of glioma patients.


Assuntos
Anexina A2 , Vesículas Extracelulares , Glioma , Humanos , Células Endoteliais/metabolismo , Anexina A2/metabolismo , Ligantes , Vesículas Extracelulares/metabolismo , Glioma/metabolismo , Heparitina Sulfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa