Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(27): e2207915, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36974570

RESUMO

Lead halide perovskite materials have great potential for photocatalytic reaction due to their low fabrication cost, unique optical absorption coefficient, and suitable band structures. However, the main problems are the toxicity and instability of the lead halide perovskite materials. Therefore, a facile synthetic method is used to prepare lead-free environmentally friendly Cs2 TiX6 (X = Cl, Cl0.5 Br0.5 , Br) perovskite materials. Their structural and optical characteristics are systematically investigated. The band gaps of the produced samples are illustrated to be from 1.87 to 2.73 eV. Moreover, these materials can keep high stability in harsh environments such as illumination and heating, and the Cs2 Ti(Cl0.5 Br0.5 )6 microcrystals demonstrate the yields of 176 µmol g-1 for CO and 78.9 µmol g-1 for CH4 after light irradiation for 3 h, which is of the first report of Ti-based perovskite photocatalysts. This finding demonstrates that the Ti-based perovskites will create opportunities for photocatalytic applications, which may offer a new idea to construct low-cost, eco-friendly, and bio-friendly photocatalysts.

2.
Crit Rev Eukaryot Gene Expr ; 31(2): 63-73, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34347980

RESUMO

The purpose of this study was to elucidate the role that the miR-18a-5p/THBD regulatory pathway plays in endometrial cancer (EC), which could provide a theoretical basis for potential therapeutic targets. Differentially expressed genes in EC tissue and normal tissue were determined by bioinformatics analysis. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to compare the expression of miR-18a-5p and THBD mRNA in normal human endometrial cells and human EC cells. CCK-8 assay was used to compare the proliferative ability of EC cells in different treatment groups. Transwell assay was used to detect the migratory and invasive abilities of EC cells in different treatment groups. Dual-luciferase assay was used to verify the targeting relationship between miR-18a-5p and THBD. Western blot assay was used to detect THBD protein expression level. qRT-PCR results showed that miR-18a-5p was significantly upregulated in EC cells, and expression of its target gene, THBD, was significantly downregulated. CCK-8 and transwell assays showed that miR-18a-5p could enhance the proliferative, migratory, and invasive abilities of EC cells, whereas THBD could weaken those abilities. Dual-luciferase assay confirmed that miR-18a-5p could negatively regulate THBD expression. In addition, rescue experiments revealed that the oncogenic effect of miR-18a-5p on EC cells was inhibited by THBD overexpression. We conclude that miR-18a-5p could promote the proliferation, migration, and invasion of EC cells by targeting and downregulating THBD expression, and the miR-18a-5p/THBD regulatory pathway might be a therapeutic target. The results of this study may serve as a theoretical basis for related drug development.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Neoplasias do Endométrio/patologia , MicroRNAs/fisiologia , Invasividade Neoplásica/fisiopatologia , Trombomodulina/metabolismo , Feminino , Inativação Gênica , Humanos , MicroRNAs/metabolismo , Ligação Proteica , Trombomodulina/genética
3.
Nanoscale ; 16(3): 1260-1271, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38126257

RESUMO

Utilization of copper-deficient Cu2-xS nanocrystals (NCs) with diverse crystal phases and stoichiometries as cation exchange (CE) templates is a potential route to overcome the current limitations in the polymorph selective synthesis of desired nanomaterials. Among the Cu2-xS NCs, covellite CuS is emerging as an attractive CE template to produce complicated and metastable metal sulfide NCs. The presence of a reducing agent is essential to induce a phase transition of CuS into other Cu2-xS phases prior to the CE reactions. Nevertheless, the effect of the reducing agent on the phase transition of CuS, especially into the hexagonal close packing (hcp) phase and the cubic close packing (ccp) phase, has been scarcely exploited, but it is highly important for the polymorphic production of metal sulfides with the wurtzite phase and zinc blende phase. Herein, we report a reducing agent dependent pre-phase transition of CuS nanodisks (NDs) into hcp and ccp Cu2-xS NCs. 1-Dodecanethiol molecules and oleylamine molecules selectively reduced CuS NDs into hcp djurleite Cu1.94S NDs and ccp digenite Cu1.8S NCs. Afterward, the hcp Cu1.94S NDs and ccp Cu1.8S NCs were exchanged by Zn2+/Cd2+/Mn2+, and the wurtzite phase and the zinc blende phase of ZnS, CdS, and MnS NCs were produced. Without the pre-phase transition, direct CE reactions of CuS NDs are incapable of synthesizing the above wurtzite and zinc blende metal sulfide NCs. Therefore, our findings suggest the importance of the pre-phase transition of the CE template in polymorphic syntheses, holding great promise in the fabrication of other polymorphic nanomaterials with novel physical and chemical properties.

4.
Adv Sci (Weinh) ; 11(6): e2307543, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070176

RESUMO

In order to deal with the global energy crisis and environmental problems, reducing carbon dioxide through artificial photosynthesis has become a hot topic. Lead halide perovskite is attracted people's attention because of its excellent photoelectric properties, but the toxicity and long-term instability prompt people to search for new photocatalysts. Herein, a series of <111> inorganic double perovskites Cs4 Mn1-x Cux Sb2 Cl12 microcrystals (x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5) are synthesized and characterized. Among them, Cs4 Mn0.7 Cu0.3 Sb2 Cl12 microcrystals have the best photocatalytic performance, and the yields of CO and CH4 are 503.86 and 68.35 µmol g-1 , respectively, after 3 h irradiation, which are the highest among pure phase perovskites reported so far. In addition, in situ Fourier transform infrared (FT-IR) spectroscopy and electron spin resonance (ESR) spectroscopy are used to explore the mechanism of the photocatalytic reaction. The results highlight the potential of this class of materials for photocatalytic reduction reactions.

5.
iScience ; 26(8): 107355, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37520698

RESUMO

Lead halide perovskites are prospective candidates for CO2 photoconversion. Herein, we report copper-doped lead-free Cs2AgSbCl6 double perovskite microcrystals (MCs) for gas-solid phase photocatalytic CO2 reduction. The 0.2Cu@Cs2AgSbCl6 double perovskite MCs display unprecedented CO2 photoreduction capability with CO and CH4 yields of 412 and 128 µmol g-1, respectively. The ultrafast transient absorption spectroscopy reveals the enhanced separation of photoexcited carriers in copper-doped Cs2AgSbCl6 MCs. The active sites and reaction intermediates on the surface of the doped Cs2AgSbCl6 are dynamically monitored and precisely unraveled based on the in-situ Fourier transform infrared spectroscopy investigation. In combination with density functional theory calculations, it is revealed that the copper-doped Cs2AgSbCl6 MCs facilitate sturdy CO2 adsorption and activation and strikingly enhance the photocatalytic performance. This work offers an in-depth interpretation of the photocatalytic mechanism of Cs2AgSbCl6 doped with copper, which may provide guidance for future design of high-performance photocatalysts for solar fuel production.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa