Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 196: 106759, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570053

RESUMO

Xuebijing injection (XBJ) is widely used to treat nephrotic syndrome (NS) in clinic, but its bioactive components and therapeutic mechanism are still unclear. In this study, the bioactive components of XBJ were determined by ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS). The therapeutic effect of XBJ on NS was evaluated in BALB/c mice induced by adriamycin (ADR, 10 mg/kg) via a single tail vein. The protective effect of XBJ and its bioactive components on podocytes was demonstrated using mouse podocytes (MPC-5) induced by lipopolysaccharide (LPS, 4 µg/mL). The results show that 33 components of XBJ were identified. Furthermore, 12 bioactive components were detected in blood, including protocatechuic acid, salvianolic acid C, benzoyloxypaeoniflorin, danshensu, salvianolic acid A, salvianolic acid B, catechin, caffeic acid, galloylpaeoniflorin, oxypaeoniflorin, hydroxysafflor yellow A, rosmarinic acid. The relative content (%) of the bioactive components were 59.32, 16.01, 9.97, 9.73, 8.72, 8.31, 7.92, 6.54, 1.54, 1.30, 0.68 and 0.59 in this order. After XBJ treatment, the renal function, hyperlipidemia and renal pathological damage were improved in NS model mice. Moreover, the levels of nephrin and desmin which are functional proteins in podocytes were reversed, and the levels of pro-inflammatory factors were reduced by XBJ. Interestingly, protocatechuic acid and salvianolic acid C also showed good protective effects on podocyte function and reduced the level of inflammation in LPS-induced MPC-5. The study is the first time to elucidate the bioactive components of XBJ and its potential therapeutic mechanism for treating NS by protecting podocyte function.

2.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38931398

RESUMO

BACKGROUND: H1N1 is one of the major subtypes of influenza A virus (IAV) that causes seasonal influenza, posing a serious threat to human health. A traditional Chinese medicine combination called Qingxing granules (QX) is utilized clinically to treat epidemic influenza. However, its chemical components are complex, and the potential pharmacological mechanisms are still unknown. METHODS: QX's effective components were gathered from the TCMSP database based on two criteria: drug-likeness (DL ≥ 0.18) and oral bioavailability (OB ≥ 30%). SwissADME was used to predict potential targets of effective components, and Cytoscape was used to create a "Herb-Component-Target" network for QX. In addition, targets associated with H1N1 were gathered from the databases GeneCards, OMIM, and GEO. Targets associated with autophagy were retrieved from the KEGG, HAMdb, and HADb databases. Intersection targets for QX, H1N1 influenza, and autophagy were identified using Venn diagrams. Afterward, key targets were screened using Cytoscape's protein-protein interaction networks built using the database STRING. Biological functions and signaling pathways of overlapping targets were observed through GO analysis and KEGG enrichment analysis. The main chemical components of QX were determined by high-performance liquid chromatography (HPLC), followed by molecular docking. Finally, the mechanism of QX in treating H1N1 was validated through animal experiments. RESULTS: A total of 786 potential targets and 91 effective components of QX were identified. There were 5420 targets related to H1N1 and 821 autophagy-related targets. The intersection of all targets of QX, H1N1, and autophagy yielded 75 intersecting targets. Ultimately, 10 core targets were selected: BCL2, CASP3, NFKB1, MTOR, JUN, TNF, HSP90AA1, EGFR, HIF1A, and MAPK3. Identification of the main chemical components of QX by HPLC resulted in the separation of seven marker ingredients within 195 min, which are amygdalin, puerarin, baicalin, phillyrin, wogonoside, baicalein, and wogonin. Molecular docking results showed that BCL2, CASP3, NFKB1, and MTOR could bind well with the compounds. In animal studies, QX reduced the degenerative alterations in the lung tissue of H1N1-infected mice by upregulating the expression of p-mTOR/mTOR and p62 and downregulating the expression of LC3, which inhibited autophagy. CONCLUSIONS: According to this study's network pharmacology analysis and experimental confirmation, QX may be able to treat H1N1 infection by regulating autophagy, lowering the expression of LC3, and increasing the expression of p62 and p-mTOR/mTOR.

3.
Chin Herb Med ; 16(1): 3-12, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38375050

RESUMO

To promote the development of extracellular vesicles of herbal medicine especially the establishment of standardization, led by the National Expert Committee on Research and Application of Chinese Herbal Vesicles, research experts in the field of herbal medicine and extracellular vesicles were invited nationwide with the support of the Expert Committee on Research and Application of Chinese Herbal Vesicles, Professional Committee on Extracellular Vesicle Research and Application, Chinese Society of Research Hospitals and the Guangdong Engineering Research Center of Chinese Herbal Vesicles. Based on the collation of relevant literature, we have adopted the Delphi method, the consensus meeting method combined with the nominal group method to form a discussion draft of "Consensus statement on research and application of Chinese herbal medicine derived extracellular vesicles-like particles (2023)". The first draft was discussed in online and offline meetings on October 12, 14, November 2, 2022 and April and May 2023 on the current status of research, nomenclature, isolation methods, quality standards and research applications of extracellular vesicles of Chinese herbal medicines, and 13 consensus opinions were finally formed. At the Third Academic Conference on Research and Application of Chinese Herbal Vesicles, held on May 26, 2023, Kewei Zhao, convenor of the consensus, presented and read the consensus to the experts of the Expert Committee on Research and Application of Chinese Herbal Vesicles. The consensus highlights the characteristics and advantages of Chinese medicine, inherits the essence, and keeps the righteousness and innovation, aiming to provide a reference for colleagues engaged in research and application of Chinese herbal vesicles at home and abroad, decode the mystery behind Chinese herbal vesicles together, establish a safe, effective and controllable accurate Chinese herbal vesicle prevention and treatment system, and build a bridge for Chinese medicine to the world.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa