RESUMO
To reveal the impact of cadmium stress on the physiological mechanism of lettuce, simultaneous determination and correlation analyses of chlorophyll content and photosynthetic function were conducted using lettuce seedlings as the research subject. The changes in relative chlorophyll content, rapid chlorophyll fluorescence induction kinetics curve, and related chlorophyll fluorescence parameters of lettuce seedling leaves under cadmium stress were detected and analyzed. Furthermore, a model for estimating relative chlorophyll content was established. The results showed that cadmium stress at 1 mg/kg and 5 mg/kg had a promoting effect on the relative chlorophyll content, while cadmium stress at 10 mg/kg and 20 mg/kg had an inhibitory effect on the relative chlorophyll content. Moreover, with the extension of time, the inhibitory effect became more pronounced. Cadmium stress affects both the donor and acceptor sides of photosystem II in lettuce seedling leaves, damaging the electron transfer chain and reducing energy transfer in the photosynthetic system. It also inhibits water photolysis and decreases electron transfer efficiency, leading to a decline in photosynthesis. However, lettuce seedling leaves can mitigate photosystem II damage caused by cadmium stress through increased thermal dissipation. The model established based on the energy captured by a reaction center for electron transfer can effectively estimate the relative chlorophyll content of leaves. This study demonstrates that chlorophyll fluorescence techniques have great potential in elucidating the physiological mechanism of cadmium stress in lettuce, as well as in achieving synchronized determination and correlation analyses of chlorophyll content and photosynthetic function.
Assuntos
Cádmio , Lactuca , Complexo de Proteína do Fotossistema II/metabolismo , Fluorescência , Fotossíntese , Clorofila , Plântula , Folhas de Planta/metabolismoRESUMO
In order to rapidly and accurately monitor cadmium contamination in lettuce and understand the growth conditions of lettuce under cadmium pollution, lettuce is used as the test material. Under different concentrations of cadmium stress and at different growth stages, relative chlorophyll content of lettuce leaves, the cadmium content in the leaves, and the visible-near infrared reflectance spectra are detected and analyzed. An inversion model of the cadmium content and relative chlorophyll content in the lettuce leaves is established. The results indicate that cadmium concentrations of 1 mg/kg and 5 mg/kg promote relative chlorophyll content, while concentrations of 10 mg/kg and 20 mg/kg inhibit relative chlorophyll content. The cadmium content in the leaves increases with increasing cadmium concentrations. Cadmium stress caused a "blue shift" in the red edge position only during the mature period, while the red valley position underwent a "blue shift" during the seedling and growth periods and a "red shift" during the mature period. The green peak position exhibited a "blue shift". After model validation, it was found that the model constructed using the ratio of red edge area to yellow edge area and the normalized values of red edge area and yellow edge area effectively estimated the cadmium content in lettuce leaves. The model established using the normalized vegetation index of the red edge and the ratio of the peak green value to red shoulder amplitude can effectively estimate the relative chlorophyll content in lettuce leaves. This study demonstrates that the visible-near infrared spectroscopy technique holds great potential for monitoring cadmium contamination and estimating chlorophyll content in lettuce.