Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2315990121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289960

RESUMO

Immune-mediated necrotizing myopathy (IMNM) is an autoimmune disorder associated with the presence of autoantibodies, characterized by severe clinical presentation with rapidly progressive muscular weakness and elevated levels of creatine kinase, while traditional pharmacological approaches possess varying and often limited effects. Considering the pathogenic role of autoantibodies, chimeric antigen receptor (CAR)-T cells targeting B cell maturation antigen (BCMA) have emerged as a promising therapeutic strategy. We reported here a patient with anti-signal recognition particle IMNM refractory to multiple available therapies, who was treated with BCMA-targeting CAR-T cells, exhibited favorable safety profiles, sustained reduction in pathogenic autoantibodies, and persistent clinical improvements over 18 mo. Longitudinal single-cell RNA, B cell receptor, T cell receptor sequencing analysis presented the normalization of immune microenvironment after CAR-T cell infusion, including reconstitution of B cell lineages, replacement of T cell subclusters, and suppression of overactivated immune cells. Analysis on characteristics of CAR-T cells in IMNM demonstrated a more active expansion of CD8+ CAR-T cells, with a dynamic phenotype shifting pattern similar in CD4+ and CD8+ CAR-T cells. A comparison of CD8+ CAR-T cells in patients with IMNM and those with malignancies collected at different timepoints revealed a more NK-like phenotype with enhanced tendency of cell death and neuroinflammation and inhibited proliferating ability of CD8+ CAR-T cells in IMNM while neuroinflammation might be the distinct characteristics. Further studies are warranted to define the molecular features of CAR-T cells in autoimmunity and to seek higher efficiency and longer persistence of CAR-T cells in treating autoimmune disorders.


Assuntos
Doenças Autoimunes , Mieloma Múltiplo , Doenças Musculares , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Antígeno de Maturação de Linfócitos B , Doenças Neuroinflamatórias , Imunoterapia Adotiva , Doenças Autoimunes/terapia , Autoanticorpos , Doenças Musculares/terapia , Análise de Célula Única , Terapia Baseada em Transplante de Células e Tecidos , Microambiente Tumoral
2.
Proc Natl Acad Sci U S A ; 120(1): e2209990120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577069

RESUMO

Microglia play a critical role in the clearance of myelin debris, thereby ensuring functional recovery from neural injury. Here, using mouse model of demyelination following two-point LPC injection, we show that the microglial autophagic-lysosomal pathway becomes overactivated in response to severe demyelination, leading to lipid droplet accumulation and a dysfunctional and pro-inflammatory microglial state, and finally failed myelin debris clearance and spatial learning deficits. Data from genetic approaches and pharmacological modulations, via microglial Atg5 deficient mice and intraventricular BAF A1 administration, respectively, demonstrate that staged suppression of excessive autophagic-lysosomal activation in microglia, but not sustained inhibition, results in better myelin debris degradation and exerts protective effects against demyelination. Combined multi-omics results in vitro further showed that enhanced lipid metabolism, especially the activation of the linoleic acid pathway, underlies this protective effect. Supplementation with conjugated linoleic acid (CLA), both in vivo and in vitro, could mimic these effects, including attenuating inflammation and restoring microglial pro-regenerative properties, finally resulting in better recovery from demyelination injuries and improved spatial learning function, by activating the peroxisome proliferator-activated receptor (PPAR-γ) pathway. Therefore, we propose that pharmacological inhibition targeting microglial autophagic-lysosomal overactivation or supplementation with CLA could represent a potential therapeutic strategy in demyelinated disorders.


Assuntos
Doenças Desmielinizantes , Microglia , Camundongos , Animais , Microglia/metabolismo , Ácido Linoleico/metabolismo , Autofagia , Doenças Desmielinizantes/metabolismo , Regeneração
3.
Brain ; 147(1): 163-176, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37740498

RESUMO

Microglia-mediated neuroinflammation contributes to acute demyelination in neuromyelitis optica spectrum disorders (NMOSD). Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in the CSF has been associated with microglial activation in several neurodegenerative diseases. However, the basis for this immune-mediated attack and the pathophysiological role of sTREM2 in NMOSD remain to be elucidated. Here, we performed Mendelian randomization analysis and identified a genetic association between increased CSF sTREM2 and NMOSD risk. CSF sTREM2 was elevated in patients with NMOSD and was positively correlated with neural injury and other neuroinflammation markers. Single-cell RNA sequencing of human macrophage/microglia-like cells in CSF, a proxy for microglia, showed that increased CSF sTREM2 was positively associated with microglial dysfunction in patients with NMOSD. Furthermore, we demonstrated that sTREM2 is a reliable biomarker of microglial activation in a mouse model of NMOSD. Using unbiased transcriptomic and lipidomic screens, we identified that excessive activation, overwhelmed phagocytosis of myelin debris, suppressed lipid metabolism and enhanced glycolysis underlie sTREM2-mediated microglial dysfunction, possibly through the nuclear factor kappa B (NF-κB) signalling pathway. These molecular and cellular findings provide a mechanistic explanation for the genetic association between CSF sTREM2 and NMOSD risk and indicate that sTREM2 could be a potential biomarker of NMOSD progression and a therapeutic target for microglia-mediated neuroinflammation.


Assuntos
Doença de Alzheimer , Neuromielite Óptica , Animais , Camundongos , Humanos , Microglia/metabolismo , Doença de Alzheimer/metabolismo , Neuromielite Óptica/genética , Neuromielite Óptica/metabolismo , Doenças Neuroinflamatórias , Biomarcadores/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética
4.
Brain Behav Immun ; 119: 416-430, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636563

RESUMO

The role of microglia in triggering the blood-brain barrier (BBB) impairment and white matter damage after chronic cerebral hypoperfusion is unclear. Here we demonstrated that the vessel-adjacent microglia were specifically activated by the leakage of plasma low-density lipoprotein (LDL), which led to BBB breakdown and ischemic demyelination. Interestingly, we found that LDL stimulation enhanced microglial phagocytosis, causing excessive engulfment of myelin debris and resulting in an overwhelming lipid burden in microglia. Surprisingly, these lipid-laden microglia exhibited a suppressed profile of inflammatory response and compromised pro-regenerative properties. Microglia-specific knockdown of LDLR or systematic medication lowering circulating LDL-C showed protective effects against ischemic demyelination. Overall, our findings demonstrated that LDL-stimulated vessel-adjacent microglia possess a disease-specific molecular signature, characterized by suppressed regenerative properties, which is associated with the propagation of demyelination during ischemic white matter damage.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Lipoproteínas LDL , Microglia , Substância Branca , Microglia/metabolismo , Animais , Substância Branca/metabolismo , Substância Branca/patologia , Camundongos , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Isquemia Encefálica/metabolismo , Barreira Hematoencefálica/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Fagocitose/fisiologia , Bainha de Mielina/metabolismo
5.
J Neurochem ; 167(4): 489-504, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37823326

RESUMO

Chronic cerebral hypoperfusion leads to sustained demyelination and a unique response of microglia. Triggering receptor expressed on myeloid cells 2 (Trem2), which is expressed exclusively on microglia in the central nervous system (CNS), plays an essential role in microglial response in various CNS disorders. However, the specific role of Trem2 in chronic cerebral hypoperfusion has not been elucidated. In this study, we investigated the specific role of Trem2 in a mouse model of chronic cerebral hypoperfusion induced by bilateral carotid artery stenosis (BCAS). Our results showed that chronic hypoperfusion induced white matter demyelination, microglial phagocytosis, and activation of the microglial autophagic-lysosomal pathway, accompanied by an increase in Trem2 expression. After Trem2 knockout, we observed attenuation of white matter lesions and microglial response. Trem2 deficiency also suppressed microglial phagocytosis and relieved activation of the autophagic-lysosomal pathway, leading to microglial polarization towards anti-inflammatory and homeostatic phenotypes. Furthermore, Trem2 knockout inhibited lipid droplet accumulation in microglia in vitro. Collectively, these findings suggest that Trem2 deficiency ameliorated microglial phagocytosis and autophagic-lysosomal activation in hypoperfusion-induced white matter injury, and could be a promising target for the treatment of chronic cerebral hypoperfusion.


Assuntos
Isquemia Encefálica , Doenças Desmielinizantes , Substância Branca , Animais , Camundongos , Substância Branca/patologia , Microglia/metabolismo , Fagocitose , Isquemia Encefálica/metabolismo , Lisossomos/metabolismo , Doenças Desmielinizantes/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
6.
J Neuroinflammation ; 20(1): 89, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013543

RESUMO

Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disorder of the central nervous system (CNS) triggered by autoimmune mechanisms. Microglia are activated and play a pivotal role in response to tissue injury. Triggering receptor expressed on myeloid cells 2 (TREM2) is expressed by microglia and promotes microglial activation, survival and phagocytosis. Here, we identify a critical role for TREM2 in microglial activation and function during AQP4-IgG and complement-induced demyelination. TREM2-deficient mice had more severe tissue damage and neurological impairment, as well as fewer oligodendrocytes with suppressed proliferation and maturation. The number of microglia clustering in NMOSD lesions and their proliferation were reduced in TREM2-deficient mice. Moreover, morphology analysis and expression of classic markers showed compromised activation of microglia in TREM2-deficient mice, which was accompanied by suppressed phagocytosis and degradation of myelin debris by microglia. These results overall indicate that TREM2 is a key regulator of microglial activation and exert neuroprotective effects in NMOSD demyelination.


Assuntos
Glicoproteínas de Membrana , Microglia , Neuromielite Óptica , Receptores Imunológicos , Animais , Camundongos , Sistema Nervoso Central , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Bainha de Mielina/metabolismo , Neuromielite Óptica/metabolismo , Fagocitose/genética , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
7.
J Neuroinflammation ; 19(1): 79, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35382840

RESUMO

BACKGROUND: Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in cerebrospinal fluid (CSF) has been described as a biomarker for microglial activation, which were observed increased in a variety of neurological disorders. OBJECTIVE: Our objective was to explore whether genetically determined CSF sTREM2 levels are causally associated with different neurological diseases by conducting a two-sample Mendelian randomization (MR) study. METHODS: Single nucleotide polymorphisms significantly associated with CSF sTREM2 levels were selected as instrumental variables to estimate the causal effects on clinically common neurological diseases, including stroke, Alzheimer's diseases, Parkinson's diseases, amyotrophic lateral sclerosis, multiple sclerosis, and epilepsy and their subtypes. Summary-level statistics of both exposure and outcomes were applied in an MR framework. RESULTS: Genetically predicted per 1 pg/dL increase of CSF sTREM2 levels was associated with higher risk of multiple sclerosis (OR = 1.038, 95%CI = 1.014-1.064, p = 0.002). Null association was found in risk of other included neurological disorders. CONCLUSIONS: These findings provide support for a potential causal relationship between elevated CSF sTREM2 levels and higher risk of multiple sclerosis.


Assuntos
Doença de Alzheimer , Glicoproteínas de Membrana , Doenças do Sistema Nervoso , Receptores Imunológicos , Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Humanos , Glicoproteínas de Membrana/líquido cefalorraquidiano , Análise da Randomização Mendeliana , Doenças do Sistema Nervoso/genética
8.
Arch Gynecol Obstet ; 305(1): 77-86, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34351473

RESUMO

PURPOSE: To determine the role of vaginal microbiota in the efficacy of cervical cerclage in obstetric outcomes of twin pregnancies. METHODS: This retrospective study enrolled 68 twin pregnant women diagnosed with cervical incompetence (CIC) and 68 twin pregnancies without CIC. The CIC group was further divided into two subgroups: cerclage group (n = 51) and non-cerclage group (n = 17), according to whether cervical cerclage was performed in the second trimester. Data of vaginal microbiota and obstetric outcomes were collected and compared. RESULTS: Cervical incompetence had harmful effect on both pregnancy outcomes and vaginal microecology, characterized by earlier gestational week at delivery (30.3 ± 5.6 vs 35.6 ± 1.1, P < 0.001), a lower birth weight of newborns (OR 0.40; 95% CI 0.22-0.74), a higher vaginal pH value (OR 0.11; 95% CI 0.04-0.30) and a lower abundance of Lactobacillus (OR 0.34; 95% CI 0.17-0.70). In addition, compared with the vaginal microbiota after cerclage, less normal diversity of bacterial flora (OR 0.35; 95% CI 0.12-1.01), less Lactobacillus (OR 0.40; 95% CI 0.18-0.91) and more Gardnerella vaginalis (OR 18.92; 95% CI 2.38-150.35) appeared before cerclage. Besides, the unhealthy vaginal environment also had an unfavorable influence on the neonatal outcomes, increased neonatal mortality rate was observed in the group of vaginal pH > 4.5 (P < 0.05). Fortunately, compared with the non-cerclage group, the cerclage group had a longer interval from diagnosis to delivery (≥ 8 weeks) and more of the newborns' birth weight were not less than 1500 g (P < 0.05). CONCLUSION: A healthy vaginal environment is essential to improve the obstetric outcome for twin pregnancies with cervical cerclage.


Assuntos
Cerclagem Cervical , Microbiota , Nascimento Prematuro , Incompetência do Colo do Útero , Feminino , Humanos , Recém-Nascido , Gravidez , Resultado da Gravidez , Gravidez de Gêmeos , Nascimento Prematuro/prevenção & controle , Estudos Retrospectivos , Incompetência do Colo do Útero/cirurgia
9.
Neurobiol Dis ; 152: 105290, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33556540

RESUMO

In response to various types of environmental and cellular stress, microglia rapidly activate and exhibit either pro- or anti-inflammatory phenotypes to maintain tissue homeostasis. Activation of microglia can result in changes in morphology, phagocytosis capacity, and secretion of cytokines. Furthermore, microglial activation also induces changes to cellular energy demand, which is dependent on the metabolism of various metabolic substrates including glucose, fatty acids, and amino acids. Accumulating evidence demonstrates metabolic reprogramming acts as a key driver of microglial immune response. For instance, microglia in pro-inflammatory states preferentially use glycolysis for energy production, whereas, cells in anti-inflammatory states are mainly powered by oxidative phosphorylation and fatty acid oxidation. In this review, we summarize recent findings regarding microglial metabolic pathways under physiological and pathological circumtances. We will then discuss how metabolic reprogramming can orchestrate microglial response to a variety of central nervous system pathologies. Finally, we highlight how manipulating metabolic pathways can reprogram microglia towards beneficial functions, and illustrate the therapeutic potential for inflammation-related neurological diseases.


Assuntos
Adaptação Fisiológica/fisiologia , Reprogramação Celular/fisiologia , Sistema Nervoso Central/metabolismo , Microglia/metabolismo , Animais , Sistema Nervoso Central/imunologia , Humanos , Metaboloma , Microglia/imunologia , Fenótipo
10.
Cell Mol Neurobiol ; 41(2): 353-364, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32342246

RESUMO

Since microglia-associated neuroinflammation plays a pivotal role in the progression of white matter diseases, modulating microglial activation has been suggested as a potential therapeutic strategy. Here, we investigated the anti-inflammatory effects of fingolimod (FTY720) on microglia and analyzed the crosstalk between microglia autophagy and neuroinflammation. Lipopolysaccharide (LPS)-induced primary cultured microglia model was established. Microglial phenotypes were assessed by Western blot, quantitative real-time polymerase chain reaction (RT-PCR) and flow cytometry. Autophagy was evaluated by immunofluorescence, MDC staining and Western blot. Rapamycin was used to investigate the role of autophagic process in regulating microglial phenotypes. The signaling markers were screened by RT-PCR and Western blot. FTY720 shifted microglial phenotype from pro-inflammatory state to anti-inflammatory state and inhibited microglial autophagy under lipopolysaccharide (LPS) treatment. Rapamycin reversed the effect of FTY720 on phenotype transformation of microglia. The results of mechanism studies have shown that FTY720 notably repressed LPS-induced STAT1 activity, which was reactivated by rapamycin. Our research suggested that FTY720 could significantly transform pro-inflammatory microglia into anti-inflammatory microglia by suppressing autophagy via STAT1.


Assuntos
Anti-Inflamatórios/farmacologia , Autofagia , Cloridrato de Fingolimode/farmacologia , Microglia/metabolismo , Microglia/patologia , Fator de Transcrição STAT1/metabolismo , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Inflamação/patologia , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Modelos Biológicos , Fenótipo , Transdução de Sinais/efeitos dos fármacos
11.
J Neuroinflammation ; 17(1): 333, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33158440

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an immune-mediated demyelinated disease of the central nervous system. Activation of microglia is involved in the pathogenesis of myelin loss. OBJECTIVE: This study is focused on the role of Hv1 in regulating demyelination and microglial activation through reactive oxygen species (ROS) production after lysophosphatidylcholine (LPC)-mediated demyelination. We also explored autophagy in this process. METHODS: A model of demyelination using two-point LPC injection into the corpus callosum was established. LFB staining, immunofluorescence, Western blot, and electron microscopy were used to study the severity of demyelination. Microglial phenotype and autophagy were detected by immunofluorescence and Western blot. Morris water maze was used to test spatial learning and memory ability. RESULTS: We have identified that LPC-mediated myelin damage was reduced by Hv1 deficiency. Furthermore, we found that ROS and autophagy of microglia increased in the demyelination region, which was also inhibited by Hv1 knockout. CONCLUSION: These results suggested that microglial Hv1 deficiency ameliorates demyelination through inhibition of ROS-mediated autophagy and microglial phenotypic transformation.


Assuntos
Autofagia/fisiologia , Doenças Desmielinizantes/metabolismo , Canais Iônicos/deficiência , Lisofosfatidilcolinas/toxicidade , Microglia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Autofagia/efeitos dos fármacos , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/patologia
12.
J Transl Med ; 17(1): 214, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262327

RESUMO

BACKGROUND: Acute ischemic stroke (AIS) due to large vessel occlusion (LVO) is a devastating cerebrovascular disorder, which could benefit from collateral circulation. Proteins associated with acute LVO pathogenesis and endothelial function may appear in blood samples of AIS patients due to LVO, thus permitting development of blood-based biomarkers for its diagnosis and prognosis. METHODS: This study is a single-center, retrospective, observational case-control trial. Consecutive patients who presented at the Department of Neurology of Tongji Hospital were recruited from July 2016 to April 2018. In the discovery phase, a proteomic approach with iTRAQ-based LC-MS/MS was used to investigate the altered proteomic pattern in plasma from patients with AIS due to LVO. In the validation study, Western blots was used to identify biomarkers associated with stroke diagnosis as well as their prognostic value associated with different collateral statuses. RESULTS: For this exploratory study, the proteomic analysis of plasma from 40 patients with AIS due to LVO and 20 healthy controls revealed seven differentially expressed proteins with a 1.2/0.83-fold or greater difference between groups. The four elevated proteins, PPBP (1.58 ± 0.78 vs 0.98 ± 0.37; P < 0.001), THBS1 (1.13 ± 0.88 vs 0.43 ± 0.26; P < 0.001), LYVE1 (1.61 ± 0.55 vs 0.97 ± 0.50; P < 0.001), and IGF2 (1.19 ± 0.42 vs 0.86 ± 0.24; P < 0.001), were verified by Western blots analysis in an independent cohort including 33 patients and 33 controls. A strong interaction was observed between the four-protein panel and the diagnosis of AIS due to LVO (AUC 0.947; P < 0.001). Furthermore, IGF2, LYVE1, and THBS1 were closely associated with collateral status (IGF2 0.115, 95% CI 0.016-0.841, P = 0.033; LYVE1 0.183, 95% CI 0.036-0.918, P = 0.039; THBS1 4.257, 95% CI 1.273-14.228, P = 0.019), and proved to be independent predictors of good outcome (IGF2 0.115, 95% CI 0.015-0.866, P = 0.036; LYVE1 0.028, 95% CI 0.002-0.334, P = 0.005; THBS1 3.294, 95% CI 1.158-9.372, P = 0.025) at a 3-month follow-up. CONCLUSIONS: The identified 4-biomarker panel could provide diagnostic aid to the existing imaging modalities for AIS due to LVO, and the prognostic value of IGF2, LYVE1, and THBS1 was proved in predicting functional outcomes related to collateral status. Trial registration ClinicalTrials.gov NCT03122002. Retrospectively registered April 20, 2017. URL of trial registry record: https://www.clinicaltrials.gov/ct2/show/NCT03122002?term=NCT+03122002&rank=1.


Assuntos
Biomarcadores/sangue , Isquemia Encefálica/sangue , Transtornos Cerebrovasculares/sangue , Transtornos Cerebrovasculares/complicações , Proteômica/métodos , Acidente Vascular Cerebral/sangue , Adulto , Idoso , Biomarcadores/análise , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Estudos de Casos e Controles , Transtornos Cerebrovasculares/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/metabolismo
13.
Front Immunol ; 15: 1325938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390334

RESUMO

Background: Growing evidence links immunological responses to Multiple sclerosis (MS), but specific immune factors are still unclear. Methods: Mendelian randomization (MR) was performed to investigate the association between peripheral hematological traits, MS risk, and its severity. Then, further subgroup analysis of immune counts and circulating cytokines and growth factors were performed. Results: MR revealed higher white blood cell count (OR [95%CI] = 1.26 [1.10,1.44], P = 1.12E-03, P adjust = 3.35E-03) and lymphocyte count (OR [95%CI] = 1.31 [1.15,1.50], P = 5.37E-05, P adjust = 3.22E-04) increased the risk of MS. In further analysis, higher T cell absolute count (OR [95%CI] = 2.04 [1.36,3.08], P = 6.37E-04, P adjust = 2.19E-02) and CD4+ T cell absolute count (OR [95%CI] = 2.11 [1.37,3.24], P = 6.37E-04, P adjust = 2.19E-02), could increase MS risk. While increasing CD25++CD4+ T cell absolute count (OR [95%CI] = 0.75 [0.66,0.86], P = 2.12E-05, P adjust = 1.72E-03), CD25++CD4+ T cell in T cell (OR [95%CI] = 0.79[0.70,0.89], P = 8.54E-05, P adjust = 5.29E-03), CD25++CD4+ T cell in CD4+ T cell (OR [95%CI] = 0.80[0.72,0.89], P = 1.85E-05, P adjust = 1.72E-03), and CD25++CD8+ T cell in T cell (OR [95%CI] = 0.68[0.57,0.81], P = 2.22E-05, P adjust = 1.72E-03), were proved to be causally defensive for MS. For the disease severity, the suggestive association between some traits related to CD4+ T cell, Tregs and MS severity were demonstrated. Moreover, elevated levels of IL-2Ra had a detrimental effect on the risk of MS (OR [95%CI] = 1.22 [1.12,1.32], P = 3.20E-06, P adjust = 1.34E-04). Conclusions: This study demonstrated a genetically predicted causal relationship between elevated peripheral immune cell counts and MS. Subgroup analysis revealed a specific contribution of peripheral immune cells, holding potential for further investigations into the underlying mechanisms of MS and its severity.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Gravidade do Paciente , Linfócitos T CD8-Positivos , Causalidade , Contagem de Células
14.
Adv Sci (Weinh) ; 11(10): e2305614, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38151703

RESUMO

Microglia, the major resident immune cells in the central nervous system, serve as the frontline soldiers against cerebral ischemic injuries, possibly along with metabolic alterations. However, signaling pathways involved in the regulation of microglial immunometabolism in ischemic stroke remain to be further elucidated. In this study, using single-nuclei RNA sequencing, a microglial subcluster up-regulated in ischemic brain tissues is identified, with high expression of Igf1 and Trem2, neuroprotective transcriptional signature and enhanced oxidative phosphorylation. Microglial depletion by PLX3397 exacerbates ischemic brain damage, which is reversed by repopulating the microglia with high Igf1 and Trem2 phenotype. Mechanistically, Igf1 serves as one of the major down-stream molecules of Trem2, and Trem2-Igf1 signaling axis regulates microglial functional and metabolic profiles, exerting neuroprotective effects on ischemic stroke. Overexpression of Igf1 and supplementation of cyclocreatine restore microglial glucometabolic levels and cellular functions even in the absence of Trem2. These findings suggest that Trem2-Igf1 signaling axis reprograms microglial immunometabolic profiles and shifts microglia toward a neuroprotective phenotype, which has promising therapeutic potential in treating ischemic stroke.


Assuntos
AVC Isquêmico , Fármacos Neuroprotetores , Humanos , Microglia/metabolismo , AVC Isquêmico/metabolismo , Transdução de Sinais , Neuroproteção , Fármacos Neuroprotetores/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo
15.
Neurosci Bull ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227181

RESUMO

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory demyelinating disease of the central nervous system (CNS) accompanied by blood-brain barrier (BBB) disruption. Dysfunction in microglial lipid metabolism is believed to be closely associated with the neuropathology of NMOSD. However, there is limited evidence on the functional relevance of circulating lipids in CNS demyelination, cellular metabolism, and microglial function. Here, we found that serum low-density lipoprotein (LDL) was positively correlated with markers of neurological damage in NMOSD patients. In addition, we demonstrated in a mouse model of NMOSD that LDL penetrates the CNS through the leaky BBB, directly activating microglia. This activation leads to excessive phagocytosis of myelin debris, inhibition of lipid metabolism, and increased glycolysis, ultimately exacerbating myelin damage. We also found that therapeutic interventions aimed at reducing circulating LDL effectively reversed the lipid metabolic dysfunction in microglia and mitigated the demyelinating injury in NMOSD. These findings shed light on the molecular and cellular mechanisms underlying the positive correlation between serum LDL and neurological damage, highlighting the potential therapeutic target for lowering circulating lipids to alleviate the acute demyelinating injury in NMOSD.

16.
EMBO Mol Med ; 16(4): 966-987, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409527

RESUMO

B-cell maturation antigen (BCMA), expressed in plasmablasts and plasma cells, could serve as a promising therapeutic target for autoimmune diseases. We reported here chimeric antigen receptor (CAR) T cells targeting BCMA in two patients with highly relapsed and refractory myasthenia gravis (one with AChR-IgG, and one with MuSk-IgG). Both patients exhibited favorable safety profiles and persistent clinical improvements over 18 months. Reconstitution of B-cell lineages with sustained reduced pathogenic autoantibodies might underlie the therapeutic efficacy. To identify the possible mechanisms underlying the therapeutic efficacy of CAR-T cells in these patients, longitudinal single-cell RNA and TCR sequencing was conducted on serial blood samples post infusion as well as their matching infusion products. By tracking the temporal evolution of CAR-T phenotypes, we demonstrated that proliferating cytotoxic-like CD8 clones were the main effectors in autoimmunity, whereas compromised cytotoxic and proliferation signature and profound mitochondrial dysfunction in CD8+ Te cells before infusion and subsequently defect CAR-T cells after manufacture might explain their characteristics in these patients. Our findings may guide future studies to improve CAR T-cell immunotherapy in autoimmune diseases.


Assuntos
Mieloma Múltiplo , Miastenia Gravis , Humanos , Imunoterapia Adotiva , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Mieloma Múltiplo/terapia , Antígeno de Maturação de Linfócitos B/genética , Linhagem da Célula , Miastenia Gravis/terapia , Linfócitos T , Imunoglobulina G
17.
Sci Immunol ; 9(95): eadj9730, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728414

RESUMO

Chimeric antigen receptor (CAR) T cell immunotherapy for the treatment of neurological autoimmune diseases is promising, but CAR T cell kinetics and immune alterations after treatment are poorly understood. Here, we performed single-cell multi-omics sequencing of paired cerebrospinal fluid (CSF) and blood samples from patients with neuromyelitis optica spectrum disorder (NMOSD) treated with anti-B cell maturation antigen (BCMA) CAR T cells. Proliferating cytotoxic-like CD8+ CAR T cell clones were identified as the main effectors in autoimmunity. Anti-BCMA CAR T cells with enhanced features of chemotaxis efficiently crossed the blood-CSF barrier, eliminated plasmablasts and plasma cells in the CSF, and suppressed neuroinflammation. The CD44-expressing early memory phenotype in infusion products was potentially associated with CAR T cell persistence in autoimmunity. Moreover, CAR T cells from patients with NMOSD displayed distinctive features of suppressed cytotoxicity compared with those from hematological malignancies. Thus, we provide mechanistic insights into CAR T cell function in patients with neurological autoimmune disease.


Assuntos
Autoimunidade , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Autoimunidade/imunologia , Sistema Nervoso Central/imunologia , Neuromielite Óptica/imunologia , Neuromielite Óptica/terapia , Receptores de Antígenos Quiméricos/imunologia , Análise de Célula Única
18.
Autophagy ; 19(6): 1896-1898, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36871202

RESUMO

The autophagic-lysosomal pathway of microglia plays a key role in myelin debris removal in white matter damage. As the lipid-rich myelin debris are engulfed by microglia, the cellular autophagic level increases, accompanied by lysosomal dysfunction. However, several issues such as how to regulate this pathway to ensure the effective degradation of myelin debris, and maintain the balance of lipid metabolism are still to be elucidated. Recently, we have demonstrated that the excessive activation of macroautophagy/autophagy leads to lipid overload in lysosomes and lipid droplets accumulation, which could be the initiator of microglial dysfunction and secondary inflammatory white matter damage. Interestingly, staged suppression of autophagic activation in the acute phase of demyelination could benefit microglia allowing them to regain the lipid metabolism balance, and reduce the excessive accumulation of lipids, thus promoting the removal of myelin debris. The neuroprotective effects of microglial autophagy regulation may be related to intracellular linoleic acid (LA) production and PPARG pathway activation.


Assuntos
Microglia , Bainha de Mielina , Bainha de Mielina/metabolismo , Microglia/metabolismo , Autofagia/fisiologia , Lisossomos/metabolismo , Lipídeos
19.
Front Aging Neurosci ; 15: 1072980, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909948

RESUMO

Background: Regulatory T cells (Treg) have been identified as a key modulator of neuroinflammation in stroke. However, little is known about the association of Treg subpopulations with clinical outcome in patients with acute ischemic stroke (AIS). Methods: Patients within 1 week from stroke onset were prospectively enrolled in this study. Healthy controls were sex-and age-matched 1:1 to AIS patients. The frequencies of Treg and Treg subsets were analyzed by flow cytometry and compared with nonstroke control. Univariate and multivariate logistic regression analysis was performed to investigate the prognostic value of Treg subsets in stroke outcomes. Results: A total of 328 patients and 328 controls were included in the study. Compared with controls, patients with AIS had higher levels of Treg frequency and memory Treg (mTreg) frequency, but lower levels of naïve Treg (nTreg) frequency and nTreg/mTreg ratio. One hundred twenty-six (38.4%) patients experienced unfavorable outcome (modified Rankin score 2-6). Multivariate regression analysis showed that nTreg/mTreg ratio was negatively associated with unfavorable 90-day outcome (the highest tertile versus the lowest tertile: odds ratio 0.13, 95% confidential interval [CI] 0.05-0.35). The risk estimation of unfavorable 90 day outcome can be significantly improved by adding nTreg/mTreg ratio to the conventional clinical parameters (continuous net reclassification improvement 91.26, 95% CI 69.04-113.5%, p < 0.001; integrated discrimination improvement 22.38, 95% CI 17.16-27.59%, p < 0.001). Conclusion: This study showed that patients with AIS had elevated Treg frequency and mTreg frequency, but reduced nTreg frequency and nTreg/mTreg ratio. Admission nTreg/mTreg ratio was an independent predictor of unfavorable 90 day outcome in AIS. However, large sample-size cohort studies are needed to confirm our findings.

20.
Aging Dis ; 14(6): 2096-2112, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199580

RESUMO

Endovascular therapy is the first-line treatment for acute ischemic stroke. However, studies have shown that, even with the timely opening of occluded blood vessels, nearly half of all patients treated with endovascular therapy for acute ischemic stroke still have poor functional recovery, a phenomenon called "futile recanalization.". The pathophysiology of futile recanalization is complex and may include tissue no-reflow (microcirculation reperfusion failure despite recanalization of the occluded large artery), early arterial reocclusion (reocclusion of the recanalized artery 24-48 hours post endovascular therapy), poor collateral circulation, hemorrhagic transformation (cerebral bleeding following primary ischemic stroke), impaired cerebrovascular autoregulation, and large hypoperfusion volume. Therapeutic strategies targeting these mechanisms have been attempted in preclinical research; however, translation to the bedside remains to be explored. This review summarizes the risk factors, pathophysiological mechanisms, and targeted therapy strategies of futile recanalization, focusing on the mechanisms and targeted therapy strategies of no-reflow to deepen the understanding of this phenomenon and provide new translational research ideas and potential intervention targets for improving the efficacy of endovascular therapy for acute ischemic stroke.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa