Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 21(2): 641-649, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30540306

RESUMO

Directed self-assembly of polymers on chemically homogeneous and heterogeneous patterns is of considerable interest for nanolithography and nanofluidic devices. By employing dissipative particle dynamics (DPD) technology, we explore the nanoscale phase separation of comb-like block copolymers (CBCPs) confined at chemically homogeneous and heterogeneous substrates. Herein, the geometric and energetic influences of striped substrates on the microphases are firstly studied using various geometries of annular stripes for the heterogeneous substrates. Different parameters including the stripe geometry, substrate selectivity, and film thickness are studied systematically. T-Junction lamellae and acclivitous alignment are achieved on the heterogeneous substrates because of the synergy of geometrical effects of the striped pattern from heterogeneous substrates together with weak preference of the substrates toward one of the CBCP components. In this study, we provide a detailed understanding of microphase separation of CBCPs on the heterogeneous substrates, and the approach outlined in the present study offers a crucial tool for experimentalists to design CBCP thin films with complex device-oriented structures.

2.
RSC Adv ; 12(54): 34990-35001, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36540258

RESUMO

The potential-pH diagrams of the main components of Ti-bearing blast furnace slag (air-cooled slag) at 298.15 K (25 °C) and an ion activity of 1.00 were drawn by thermodynamic calculation. Thermodynamic analysis showed that the main metal components, when the Ti-bearing blast furnace slag is roasted with concentrated sulfuric acid, could be converted to sulfate. From these analyses, it can be seen that under strong acid conditions, the major metal components could react to form sulfate, and the effective separation of Ti, Mg, and Al can be achieved from both Ca and Si. Further experiments were performed with a 5.0% dilute sulfuric acid solution used to leach a Ti-bearing blast furnace slag sample that had been calcined with concentrated sulfuric acid, at a liquid-solid ratio of 10, a reaction time of 60 min, and a reaction temperature of 338.15 K (65 °C). This led to a leaching ratio of Ti above 85.0%, leaching ratios of Mg and Al higher than 95.0%, and leaching ratios of Fe and Ca of 45.7% and 24.7%, respectively. All these values were higher than the leaching ratios of Ti-bearing blast furnace slag.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa