RESUMO
Further improvements in perovskite solar cells require better control of ionic defects in the perovskite photoactive layer during the manufacturing stage and their usage1-5. Here we report a living passivation strategy using a hindered urea/thiocarbamate bond6-8 Lewis acid-base material (HUBLA), where dynamic covalent bonds with water and heat-activated characteristics can dynamically heal the perovskite to ensure device performance and stability. Upon exposure to moisture or heat, HUBLA generates new agents and further passivates defects in the perovskite. This passivation strategy achieved high-performance devices with a power conversion efficiency (PCE) of 25.1 per cent. HUBLA devices retained 94 per cent of their initial PCE for approximately 1,500 hours of ageing at 85 degrees Celsius in nitrogen and maintained 88 per cent of their initial PCE after 1,000 hours of ageing at 85 degrees Celsius and 30 per cent relative humidity in air.
RESUMO
DNA biosynthesis, a focus of fundamental and applied research, typically involves DNA polymerases by using templates, primers, and dNTPs. Some polymerases can polymerize dNTPs for DNA de novo synthesis, although this is generally to occur randomly. This novel synthesis method has garnered our attention and practical use. Herein, we observed that the addition of endonuclease significantly enhances the efficiency of the de novo synthesis reaction catalyzed by the DNA polymerase. We further investigated the reaction conditions that influence this efficiency. Building on the optimal reaction conditions, we developed a rapid and efficient strategy for preparing DNA hydrogel. Further, coupled with the CRISPR-Cas system, we developed a nucleic acid signal amplification system characterized by versatility, sensitivity, specificity, and no risk of aerosol contamination. We successfully detected viral nucleic acids in clinical samples. In summary, our study demonstrates the significant potential of DNA polymerase- and endonuclease-catalyzed DNA de novo synthesis in diverse applications.
Assuntos
DNA Polimerase Dirigida por DNA , DNA , Técnicas de Amplificação de Ácido Nucleico , Humanos , Sistemas CRISPR-Cas , DNA/biossíntese , DNA Polimerase Dirigida por DNA/metabolismo , Endonucleases/metabolismo , Hidrogéis/químicaRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a 5 year survival rate less than 12%. This malignancy is closely related to the unique tumor microenvironment (TME), which is characterized by a hypovascular and hyperdense extracellular matrix, making it difficult for drugs to permeate the tumor center. Near-infrared fluorescence (NIRF) imaging, which has high sensitivity and resolution, may improve the survival rate of PDAC patients. In this study, we first used JS-K (O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazine-1-yl] diazene-1-ium-1,2-diolate) to specifically dilate blood vessels within the TME of PDAC patients and subsequently injected IR820-PEG-MNPs (IPM NPs) to diagnose and treat orthotopic PDAC. We found that JS-K promoted the accumulation of IPM NPs in orthotopic Pan02 tumor-bearing mice and was able to increase the tumor signal-to-background ratio (SBR) in the orthotopic PDAC area by 41.5%. In addition, surgical navigation in orthotopic Pan02 tumor-bearing mice and complete tumor resection based on fluorescence imaging were achieved with a detection sensitivity of 81.0%. Moreover, we verified the feasibility of the combination of laparoscopy and photothermal ablation (PTA) for the treatment of PDAC. Finally, we demonstrated that IPM NPs had greater affinity for human PDAC tissues than for normal pancreatic tissues ex vivo, preliminarily highlighting the potential for clinical translation of these NPs. In conclusion, we developed and validated a novel sequential delivery strategy that promotes the accumulation of nanoagents in the tumor area and can be used for the diagnosis and treatment of PDAC.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Melaninas , Medicina de Precisão , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Imagem Óptica/métodos , Linhagem Celular Tumoral , Microambiente TumoralRESUMO
Rieske non-heme dioxygenase family enzymes play an important role in the aerobic biodegradation of nitroaromatic pollutants, but no active dioxygenases are available in nature for initial reactions in the degradation of many refractory pollutants like 2,4-dichloronitrobenzene (24DCNB). Here, we report the engineering of hotspots in 2,3-dichloronitrobenzene dioxygenase from Diaphorobacter sp. strain JS3051, achieved through molecular dynamic simulation analysis and site-directed mutagenesis, with the aim of enhancing its catalytic activity toward 24DCNB. The computationally predicted activity scores were largely consistent with the detected activities in wet experiments. Among them, the two most beneficial mutations (E204M and M248I) were obtained, and the combined mutant reached up to a 62-fold increase in activity toward 24DCNB, generating a single product, 3,5-dichlorocatechol, which is a naturally occurring compound. In silico analysis confirmed that residue 204 affected the substrate preference for meta-substituted nitroarenes, while residue 248 may influence substrate preference by interaction with residue 295. Overall, this study provides a framework for manipulating nitroarene dioxygenases using computational methods to address various nitroarene contamination problems.IMPORTANCEAs a result of human activities, various nitroaromatic pollutants continue to enter the biosphere with poor degradability, and dioxygenation is an important kickoff step to remove toxic nitro-groups and convert them into degradable products. The biodegradation of many nitroarenes has been reported over the decades; however, many others still lack corresponding enzymes to initiate their degradation. Although rieske non-heme dioxygenase family enzymes play extraordinarily important roles in the aerobic biodegradation of various nitroaromatic pollutants, prediction of their substrate specificity is difficult. This work greatly improved the catalytic activity of dioxygenase against 2,4-dichloronitrobenzene by computer-aided semi-rational design, paving a new way for the evolution strategy of nitroarene dioxygenase. This study highlights the potential for using enzyme structure-function information with computational pre-screening methods to rapidly tailor the catalytic functions of enzymes toward poorly biodegradable contaminants.
Assuntos
Dioxigenases , Nitrobenzenos , Dioxigenases/metabolismo , Dioxigenases/genética , Dioxigenases/química , Nitrobenzenos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Biodegradação Ambiental , Mutagênese Sítio-Dirigida , Simulação de Dinâmica MolecularRESUMO
Many Acinetobacter species can grow on n-alkanes of varying lengths (≤C40). AlmA, a unique flavoprotein in these Acinetobacter strains, is the only enzyme proven to be required for the degradation of long-chain (LC) n-alkanes, including C32 and C36 alkanes. Although it is commonly presumed to be a terminal hydroxylase, its role in n-alkane degradation remains elusive. In this study, we conducted physiological, biochemical, and bioinformatics analyses of AlmA to determine its role in n-alkane degradation by Acinetobacter baylyi ADP1. Consistent with previous reports, gene deletion analysis showed that almA was vital for the degradation of LC n-alkanes (C26-C36). Additionally, enzymatic analysis revealed that AlmA catalyzed the conversion of aliphatic 2-ketones (C10-C16) to their corresponding esters, but it did not conduct n-alkane hydroxylation under the same conditions, thus suggesting that AlmA in strain ADP1 possesses Baeyer-Villiger monooxygenase (BVMO) activity. These results were further confirmed by bioinformatics analysis, which revealed that AlmA was closer to functionally identified BVMOs than to hydroxylases. Altogether, the results of our study suggest that LC n-alkane degradation by strain ADP1 possibly follows a novel subterminal oxidation pathway that is distinct from the terminal oxidation pathway followed for short-chain n-alkane degradation. Furthermore, our findings suggest that AlmA catalyzes the third reaction in the LC n-alkane degradation pathway.IMPORTANCEMany microbial studies on n-alkane degradation are focused on the genes involved in short-chain n-alkane (≤C16) degradation; however, reports on the genes involved in long-chain (LC) n-alkane (>C20) degradation are limited. Thus far, only AlmA has been reported to be involved in LC n-alkane degradation by Acinetobacter spp.; however, its role in the n-alkane degradation pathway remains elusive. In this study, we conducted a detailed characterization of AlmA in A. baylyi ADP1 and found that AlmA exhibits Baeyer-Villiger monooxygenase activity, thus indicating the presence of a novel LC n-alkane biodegradation mechanism in strain ADP1.
Assuntos
Acinetobacter , Oxigenases de Função Mista , Oxigenases de Função Mista/metabolismo , Alcanos/metabolismo , Oxirredução , Acinetobacter/genéticaRESUMO
The extensive accumulation of polyethylene terephthalate (PET) has become a critical environmental issue. PET hydrolases can break down PET into its building blocks. Recently, we identified a glacial PET hydrolase GlacPETase sharing less than 31% amino acid identity with any known PET hydrolases. In this study, the crystal structure of GlacPETase was determined at 1.8 Å resolution, revealing unique structural features including a distinctive N-terminal disulfide bond and a specific salt bridge network. Site-directed mutagenesis demonstrated that the disruption of the N-terminal disulfide bond did not reduce GlacPETase's thermostability or its catalytic activity on PET. However, mutations in the salt bridges resulted in changes in melting temperature ranging from -8°C to +2°C and the activity on PET ranging from 17.5% to 145.5% compared to the wild type. Molecular dynamics simulations revealed that these salt bridges stabilized the GlacPETase's structure by maintaining their surrounding structure. Phylogenetic analysis indicated that GlacPETase represented a distinct branch within PET hydrolases-like proteins, with the salt bridges and disulfide bonds in this branch being relatively conserved. This research contributed to the improvement of our comprehension of the structural mechanisms that dictate the thermostability of PET hydrolases, highlighting the diverse characteristics and adaptability observed within PET hydrolases.IMPORTANCEThe pervasive problem of polyethylene terephthalate (PET) pollution in various terrestrial and marine environments is widely acknowledged and continues to escalate. PET hydrolases, such as GlacPETase in this study, offered a solution for breaking down PET. Its unique origin and less than 31% identity with any known PET hydrolases have driven us to resolve its structure. Here, we report the correlation between its unique structure and biochemical properties, focusing on an N-terminal disulfide bond and specific salt bridges. Through site-directed mutagenesis experiments and molecular dynamics simulations, the roles of the N-terminal disulfide bond and salt bridges were elucidated in GlacPETase. This research enhanced our understanding of the role of salt bridges in the thermostability of PET hydrolases, providing a valuable reference for the future engineering of PET hydrolases.
Assuntos
Hidrolases , Polietilenotereftalatos , Polietilenotereftalatos/metabolismo , Filogenia , Estabilidade Enzimática , Hidrolases/metabolismo , Dissulfetos , TemperaturaRESUMO
BACKGROUND: Papillary thyroid carcinoma (PTC) is the most frequent histological type of thyroid carcinoma. Although an increasing number of diagnostic methods have recently been developed, the diagnosis of a few nodules is still unsatisfactory. Therefore, the present study aimed to develop and validate a comprehensive prediction model to optimize the diagnosis of PTC. METHODS: A total of 152 thyroid nodules that were evaluated by postoperative pathological examination were included in the development and validation cohorts recruited from two centres between August 2019 and February 2022. Patient data, including general information, cytopathology, imprinted gene detection, and ultrasound features, were obtained to establish a prediction model for PTC. Multivariate logistic regression analysis with a bidirectional elimination approach was performed to identify the predictors and develop the model. RESULTS: A comprehensive prediction model with predictors, such as component, microcalcification, imprinted gene detection, and cytopathology, was developed. The area under the curve (AUC), sensitivity, specificity, and accuracy of the developed model were 0.98, 97.0%, 89.5%, and 94.4%, respectively. The prediction model also showed satisfactory performance in both internal and external validations. Moreover, the novel method (imprinted gene detection) was demonstrated to play a role in improving the diagnosis of PTC. CONCLUSION: The present study developed and validated a comprehensive prediction model for PTC, and a visualized nomogram based on the prediction model was provided for clinical application. The prediction model with imprinted gene detection effectively improves the diagnosis of PTCs that are undetermined by the current means.
Assuntos
Carcinoma Papilar , Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/diagnóstico , Câncer Papilífero da Tireoide/genética , Carcinoma Papilar/diagnóstico , Carcinoma Papilar/genética , Carcinoma Papilar/patologia , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/patologia , Nomogramas , Estudos RetrospectivosRESUMO
Two complexes of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) were employed to evaluate the aromaticity of their tetrazole rings via deep analysis such as the electronic structure, the ZZ component of the natural chemical shielding tensor (NICSZZ) and component orbitals, localized orbital locator purely contributed by σ-orbitals (LOL-σ) and localized orbital locator purely contributed by π-orbitals (LOL-π), the anisotropy of the induced current density (AICD) and the ZZ component of iso-chemical shielding surface (ICSSZZ) of these tetrazole rings thereof. The conclusion shows: that all tetrazole rings and bi-tetrazole rings in complexes have strong σ and a comparable strength π double aromaticity; all these magnetic shields almost symmetrically increase from the central axis to the tetrazole ring atoms; tetrazole rings in complex II show a little stronger dual aromaticity than that in complex I mainly due to the different orientation of the fragment 2 encompassing two hydroxylamine groups resulting in different effects on the contributions of σ orbitals and π orbitals to total aromaticity of tetrazole rings thereof; the difference in aromaticity is fundamentally caused by the atoms O with stronger electron-withdrawing than atom N in fragment 2 interact with bi-tetrazole ring through O in complex I but through N in complex II.
RESUMO
We report on a synthesis protocol, experimental characterization, and theoretical modeling of active pulsatile Belousov-Zhabotinsky (BZ) hydrogels. Our two-step synthesis technique allows independent optimization of the geometry, the chemical, and the mechanical properties of BZ gels. We identify the role of the surrounding medium chemistry and gel radius for the occurrence of BZ gel oscillations, quantified by the Damköhler number, which is the ratio of chemical reaction to diffusion rates. Tuning the BZ gel size to maximize its chemomechanical oscillation amplitude, we find that its oscillatory strain amplitude is limited by the time scale of gel swelling relative to the chemical oscillation period. Our experimental findings are in good agreement with a Vanag-Epstein model of BZ chemistry and a Tanaka Fillmore theory of gel swelling dynamics.
RESUMO
AIMS: A few studies have reported the effect and safety of pulsed field ablation (PFA) catheters for ablating atrial fibrillation (AF), which were mainly based on basket-shaped or flower-shaped designs. However, the clinical application of a circular-shaped multi-electrode catheter with magnetic sensors is very limited. To study the efficacy and safety of a PFA system in patients with paroxysmal AF using a circular-shaped multi-electrode catheter equipped with magnetic sensors for pulmonary vein isolation (PVI). METHODS AND RESULTS: A novel proprietary bipolar PFA system was used for PVI, which utilized a circular-shaped multi-electrode catheter with magnetic sensors and allowed for three-dimensional model reconstruction, mapping, and ablation in one map. To evaluate the efficacy, efficiency, and safety of this PFA system, a prospective, multi-centre, single-armed, pre-market clinical study was performed. From July 2021 to December 2022, 151 patients with paroxysmal AF were included and underwent PVI. The study examined procedure time, immediate success rate, procedural success rate at 12 months, and relevant complications. In all 151 patients, all the pulmonary veins were acutely isolated using the studied system. Pulsed field ablation delivery was 78.4 ± 41.8 times and 31.3 ± 16.7â ms per patient. Skin-to-skin procedure time was 74.2 ± 29.8â min, and fluoroscopy time was 13.1 ± 7.6â min. The initial 11 (7.2%) cases underwent procedures with deep sedation anaesthesia, and the following cases underwent local anaesthesia. In the initial 11 cases, 4 cases (36.4%) presented transient vagal responses, and the rest were all successfully preventatively treated with atropine injection and rapid fluid infusion. No severe complications were found during or after the procedure. During follow-up, 3 cases experienced atrial flutter, and 11 cases had AF recurrence. The estimated 12-month Kaplan-Meier of freedom from arrhythmia was 88.4%. CONCLUSION: The PFA system, comprised of a circular PFA catheter with magnetic sensors, could rapidly achieve PVI under three-dimensional guidance and demonstrated excellent safety with comparable effects.
Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Humanos , Veias Pulmonares/cirurgia , Resultado do Tratamento , Estudos Prospectivos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Catéteres , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Fenômenos Magnéticos , RecidivaRESUMO
BACKGROUND: Macrolide-resistant Mycoplasma pneumoniae (MRMP) strains are increasingly prevalent, leading to a rise in severe Mycoplasma pneumoniae pneumonia incidence annually, which poses a significant threat to children's health. This study aimed to compare the effectiveness and safety of oral minocycline and doxycycline for the treatment of severe MRMP pneumonia in children. METHODS: This retrospective analysis included children treated for severe MRMP pneumonia at the Pediatric Department of Tongji Hospital, Shanghai, China, between September 2023 and January 2024 using minocycline and doxycycline. The patients were divided into four groups according to treatment: oral doxycycline alone (DOX group), oral minocycline alone (MIN group), oral doxycycline with intravenous glucocorticoids (DOXG group), and oral minocycline with intravenous glucocorticoids (MING group). Student's t-test, Mann-Whitney U test, and χ2 or Fisher's exact tests were used for group comparisons. RESULTS: A total of 165 patients were included in this study: 84 received minocycline, and 81 received doxycycline. The DOX group had higher fever resolution rates within 24, 48, and 72 h compared to the MIN group (63.2% vs. 31.8%, 79.0% vs. 63.6%, and 100% vs. 90.9%, respectively; all p < 0.05). The DOXG group showed higher fever resolution rates within 24 and 48 h than the MING group (92.3% vs. 83.4%, 100% vs. 92.7%, all p > 0.05). There were no statistically significant differences in time to imaging improvement, cough improvement, and disappearance of wet rales between groups, regardless of glucocorticoid combination. The longer the duration of fever prior to tetracycline therapy, the greater the likelihood of hypoxemia (p = 0.039) and a greater than two-fold elevation in the D-dimer level (p = 0.004).Univariate binary logistic regression model analysis revealed that CRP and erythrocyte sedimentation rate at disease onset were associated with defervescence within 24 h after treatment with tetracyclines alone (p = 0.020, p = 0.027), with erythrocyte sedimentation rate also influencing defervescence within 48 h (p = 0.022). CONCLUSION: Doxycycline treatment resulted in a higher rate of defervescence than minocycline. Prompt treatment reduced the probability of pleural effusion, hypoxemia, pulmonary atelectasis, and D-dimer levels > 2 times the reference value.
Assuntos
Antibacterianos , Doxiciclina , Macrolídeos , Minociclina , Mycoplasma pneumoniae , Pneumonia por Mycoplasma , Humanos , Pneumonia por Mycoplasma/tratamento farmacológico , Pneumonia por Mycoplasma/microbiologia , Estudos Retrospectivos , Criança , Feminino , Masculino , Mycoplasma pneumoniae/efeitos dos fármacos , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Pré-Escolar , Macrolídeos/uso terapêutico , Macrolídeos/administração & dosagem , Minociclina/uso terapêutico , Minociclina/administração & dosagem , Doxiciclina/uso terapêutico , Doxiciclina/administração & dosagem , China , Farmacorresistência Bacteriana , Resultado do Tratamento , Glucocorticoides/uso terapêutico , Glucocorticoides/administração & dosagem , Adolescente , Quimioterapia Combinada , Tetraciclinas/uso terapêutico , Tetraciclinas/administração & dosagem , LactenteRESUMO
The Editors of Medical Science Monitor wish to inform you that the above manuscript has been retracted from publication due to concerns with the credibility and originality of the study, the manuscript content, and the Figure images. Reference: Na Li, Mei Han, Ning Zhou, Yong Tang, Xu-Shan Tang. MicroRNA-495 Confers Increased Sensitivity to Chemotherapeutic Agents in Gastric Cancer via the Mammalian Target of Rapamycin (mTOR) Signaling Pathway by Interacting with Human Epidermal Growth Factor Receptor 2 (ERBB2). Med Sci Monit, 2018; 24: CLR5990-5972. DOI: 10.12659/MSM.909458.
Assuntos
Antineoplásicos , MicroRNAs , Receptor ErbB-2 , Transdução de Sinais , Neoplasias Gástricas , Serina-Treonina Quinases TOR , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genéticaRESUMO
BACKGROUND: Lumbar degenerative conditions are a major cause of back pain and disability in individuals aged 45 and above. Gait analysis utilizes sensor technology to collect movement data, aiding in the evaluation of various gait aspects like spatiotemporal parameters, joint angles, neuromuscular activity, and joint forces. It is widely used in conditions such as cerebral palsy and knee osteoarthritis. This research aims to assess the effectiveness of 3D gait analysis in evaluating surgical outcomes and postoperative rehabilitation for lumbar degenerative disorders. METHODS: A prospective self-controlled before-after study (n = 85) carried out at our Hospital (Sep 2018 - Dec 2021) utilized a 3D motion analysis system to analyze gait in patients with lumbar degenerative diseases. The study focused on the multifidus muscle, a crucial spinal muscle, during a minimally invasive lumbar interbody fusion surgery conducted by Shandong Weigao Pharmaceutical Co., Ltd. Pre- and postoperative assessments included time-distance parameters (gait speed, stride frequency, stride length, stance phase), hip flexion angle, and stride angle. Changes in 3D gait parameters post-surgery and during rehabilitation were examined. Pearson correlation coefficient was employed to assess relationships with the visual analog pain scale (VAS), Oswestry Disability Index (ODI), and Japanese Orthopedic Association (JOA) scores. Patient sagittal alignment was evaluated using "Surgimap" software from two types of lateral radiographs to obtain parameters like pelvic incidence (PI), pelvic tilt (PT), sacral slope (SS), lumbar lordosis (LL), intervertebral space height (DH), posterior height of the intervertebral space (PDH) at the operative segment, and anterior height of the intervertebral space (ADH). RESULTS: By the 6th week post-operation, significant improvements were observed in the VAS score, JOA score, and ODI score of the patients compared to preoperative values (P < 0.05), along with notable enhancements in 3D gait quantification parameters (P < 0.05). Pearson correlation analysis revealed a significant positive correlation between improvements in 3D gait quantification parameters and VAS score, JOA score, and ODI value (all P < 0.001). CONCLUSION: 3D gait analysis is a valuable tool for evaluating the efficacy of surgery and rehabilitation training in patients.
Assuntos
Análise da Marcha , Vértebras Lombares , Fusão Vertebral , Humanos , Masculino , Análise da Marcha/métodos , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , Vértebras Lombares/cirurgia , Fusão Vertebral/métodos , Fusão Vertebral/reabilitação , Idoso , Resultado do Tratamento , Imageamento Tridimensional , Degeneração do Disco Intervertebral/cirurgia , Medição da Dor , Avaliação da DeficiênciaRESUMO
Iridoid components have been reported to have significant neuroprotective effects. However, it is not yet clear whether the efficacy and mechanisms of iridoid components with similar structures are also similar. This study aimed to compare the neuroprotective effects and mechanisms of eight iridoid components (catalpol (CAT), genipin (GE), geniposide (GEN), geniposidic acid (GPA), aucubin (AU), ajugol (AJU), rehmannioside C (RC), and rehmannioside D (RD)) based on corticosterone (CORT)-induced injury in PC12 cells. PC12 cells were randomly divided into a normal control group (NC), model group (M), positive drug group (FLX), and eight iridoid administration groups. Firstly, PC12 cells were induced with CORT to simulate neuronal injury. Then, the MTT method and flow cytometry were applied to evaluate the protective effects of eight iridoid components on PC12 cell damage. Thirdly, a cell metabolomics study based on ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was performed to explore changes in relevant biomarkers and metabolic pathways following the intervention of administration. The MTT assay and flow cytometry analysis showed that the eight iridoid components can improve cell viability, inhibit cell apoptosis, reduce intracellular ROS levels, and elevate MMP levels. In the PCA score plots, the sample points of the treatment groups showed a trend towards approaching the NC group. Among them, AU, AJU, and RC had a weaker effect. There were 38 metabolites (19 metabolites each in positive and negative ion modes, respectively) identified as potential biomarkers during the experiment, among which 23 metabolites were common biomarkers of the eight iridoid groups. Pathway enrichment analysis revealed that the eight iridoid components regulated the metabolism mainly in relation to D-glutamine and D-glutamate metabolism, arginine biosynthesis, the TCA cycle, purine metabolism, and glutathione metabolism. In conclusion, the eight iridoid components could reverse an imbalanced metabolic state by regulating amino acid neurotransmitters, interfering with amino acid metabolism and energy metabolism, and harmonizing the level of oxidized substances to exhibit neuroprotective effects.
Assuntos
Glucosídeos Iridoides , Glicosídeos Iridoides , Fármacos Neuroprotetores , Piranos , Animais , Ratos , Fármacos Neuroprotetores/farmacologia , Metabolômica , Iridoides/farmacologia , Aminoácidos , BiomarcadoresRESUMO
Urine metabolomics based on ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS) was utilized to investigate the metabolic regulation mechanism of Tingli Dazao Xiefei Decoction(TLDZ) in rats with allergic asthma. SD male rats were divided into a normal group, a model group, a dexamethasone group, and a TLDZ group. The allergic asthma model was established by intraperitoneal injection of ovalbumin(OVA) to induce allergy, combined with atomization excitation. Urine metabolites from all rats were collected by UHPLC-Q-TOF-MS. The metabolic profiles of rats in each group were built by principal component analysis(PCA). Besides, the differential metabolites between the model group and the TLDZ group were selected by orthogonal partial least squares discriminant analysis(OPLS-DA), t-test(P<0.05), and variable importance in the projection(VIP) values of more than 3. The differential metabolites were identified through HMDB, METLIN, and other online databa-ses. Heat maps and clustering analysis for relative quantitative information of biomarkers in each group were drawn by MeV 4.8.0 software. Finally, MetaboAnalyst, MBRole, and KEGG databases were used to enrich related metabolic pathways and construct metabolic networks. The result demonstrated that TLDZ could effectively regulate the disordered urine metabolic profiles of asthmatic rats. Combined with multivariate statistical analysis and online databases, a total of 45 differential metabolites with significant changes(P<0.05) between the model group and the TLDZ group were screened out. Metabolic pathways including histidine metabolism, tryptophan metabolism, and arginine and proline metabolism were enriched. TLDZ could improve asthma by regulating related metabolic pathways and interfering with pathological processes such as immune homeostasis airway inflammation. The study investigates the molecular mechanism of anti-asthma of TLDZ from the perspective of urine metabolomics, and combined with previous pharmacological studies, it provides a scientific basis for the clinical development and application of TLDZ in the treatment of asthma.
Assuntos
Asma , Medicamentos de Ervas Chinesas , Metabolômica , Ratos Sprague-Dawley , Animais , Asma/tratamento farmacológico , Asma/urina , Asma/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Masculino , Ratos , Cromatografia Líquida de Alta Pressão , Humanos , Urina/química , Espectrometria de Massas em TandemRESUMO
This study aims to explore the improvement effect of Sijunzi Decoction on intestinal barrier in diabetic mice. A type 2 diabetes mellitus(T2DM) model was established in C57BL/6J mice by feeding them with high-sugar and high-fat diet combined with streptozotocin(STZ). The T2DM mice were randomly divided into a control group, a T2DM group, a donepezil(DON) group, a rosiglitazone(RGZ) group, and Sijunzi Decoction groups(7. 5, 15, and 30 g·kg~(-1)), and orally administered for six weeks. The body weight and fasting plasma glucose(FBG) of mice were recorded. Fasting plasma insulin(FINS) and insulin resistance index(HOMA-IR) were observed to assess insulin resistance(IR). Intestinal flora and levels of serotonin(5-HT), lipopolysaccharide(LPS), and short-chain fatty acids(SCFAs) in serum were analyzed. Changes in colonic structure and tight junction proteins occludin, claudin-1,and ZO-1 were observed through HE staining and immunohistochemistry. Spontaneous alternation test was conducted to observe the effect on spatial memory ability. Compared with the results in the control group, FBG and HOMA-IR in the T2DM group were significantly increased(P< 0. 01); species richness index(Sobs index), Shannon diversity index(Shannon index), and species abundance estimate index(Chao index) were decreased; LPS was significantly increased(P< 0. 001), while the levels of 5-HT,SCFAs, occludin, claudin-1, and ZO-1 were significantly decreased(P< 0. 01), indicating impaired colonic barrier function;spontaneous alternation accuracy was significantly decreased(P<0. 05). After 6 weeks of Sijunzi Decoction treatment, compared with the results in the T2DM group, FBG and HOMA-IR in the Sijunzi Decoction 15 g·kg~(-1) group were significantly decreased(P<0. 01);Sobs index, Shannon index, and Chao index were increased; LPS was significantly decreased(P<0. 01), while the levels of 5-HT,SCFAs, occludin, claudin-1, and ZO-1 were significantly increased(P< 0. 05), indicating improved colonic barrier function;spontaneous alternation accuracy was increased(P<0. 001). In conclusion, Sijunzi Decoction has the effect of improving intestinal barrier in diabetic mice.
Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Camundongos Endogâmicos C57BL , Animais , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Camundongos , Masculino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Resistência à Insulina , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Insulina/sangue , Insulina/metabolismo , Humanos , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Ocludina/metabolismo , Ocludina/genética , Claudina-1/metabolismo , Claudina-1/genéticaRESUMO
Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q/TOF-MS) was employed to examine the impact of Coptidis Rhizoma(CR) and its processed products on the metabolism in the rat model of oral ulcer due to excess heat and to compare the effectiveness of CR and its three products. Male SD rats were randomly allocated to the sham-operation(Sham), model(M, oral ulcer due to excess heat), CR, wine/Zingiberis Rhizoma Recens/Euodiae Fructus processed CR(wCR/zCR/eCR), and Huanglian Shangqing Tablets(HST) groups. Except the Sham group, the other groups were administrated with Codonopsis Radix-Astragali Radix decoction by gavage for two consecutive weeks. The anal temperature and water consumption of rats were monitored throughout the modeling period of excess heat. Following the completion of the modeling, oral ulcer was modeled with acetic acid. Hematoxylin-eosin(HE) staining was employed to observe the mucosal pathological changes in oral ulcer. A colorimetric assay was employed to determine the serum level of glutathione peroxidase(GSH-Px). Enzyme-linked immunosorbent assay(ELISA) was conducted to determine the levels of tumor necrosis factor-alpha(TNF-α), interleukin-6(IL-6), interleukin-1ß(IL-1ß), superoxide dismutase(SOD), and malondialdehyde(MDA) in the serum. The non-targeted metabolomics analysis based on UPLC-Q/TOF-MS was conducted on the serum samples. Metabolic profiles were then built, and the potential biomarkers were screened by principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA). The Mev software was used to establish a heat map and conduct cluster analysis on the quantitative results of the markers. The online databases including MBRole, KEGG, and MetaboAnalyst were used for pathway enrichment analysis and metabolic network building. The experimental results showed that the modeling led to pathological damage to the oral mucosa, elevated serum levels of TNF-α, IL-6, IL-1ß, and MDA, and lowered levels of SOD and GSH-Px in rats. The drug administration recovered all the indices to varying extents, and wCR exhibited the best performance. Non-targeted metabolomics identified 48 differential metabolites including 27 metabolites in the positive ion mode and 21 metabolites in the negative ion mode. Five enriched pathways were common, including glycerophospholipid metabolism, linoleic acid metabolism, and tyrosine metabolism. Conclusively, CR and its three processed products could alleviate the inflammation and oxidative stress injury in rats suffering from oral ulcers due to excess heat by regulating lipid and amino acid metabolism. Notably, wCR demonstrated the most significant therapeutic effect.
Assuntos
Medicamentos de Ervas Chinesas , Úlceras Orais , Ratos , Masculino , Animais , Medicamentos de Ervas Chinesas/farmacologia , Úlceras Orais/tratamento farmacológico , Interleucina-6 , Temperatura Alta , Fator de Necrose Tumoral alfa , Ratos Sprague-Dawley , Metabolômica/métodos , Cromatografia Líquida de Alta Pressão , Superóxido Dismutase , BiomarcadoresRESUMO
Circulation of influenza A virus (IAV), especially within poultry and pigs, continues to threaten public health. A simple and universal detecting method is important for monitoring IAV infection in different species. Recently, nanobodies, which show advantages of easy gene editing and low cost of production, are a promising novel diagnostic tool for the monitoring and control of global IAVs. In the present study, five nanobodies against the nucleoprotein of H9N2 IAV were screened from the immunized Bactrian camel by phage display and modified with horseradish peroxidase (HRP) tags. Out of which, we determined that H9N2-NP-Nb5-HRP can crossreact with different subtypes of IAVs, and this reaction is also blocked by positive sera for antibodies against different IAV subtypes. Epitope mapping showed that the nanobody-HRP fusion recognized a conserved conformational epitope in all subtypes of IAVs. Subsequently, we developed a nanobody-based competitive ELISA (cELISA) for detecting anti-IAV antibodies in different species. The optimized amount of coating antigen and dilutions of the fusion and testing sera were 100 ng/well, 1:4000, and 1:10, respectively. The time for operating the cELISA was approximately 35 min. The cELISA showed high sensitivity, specificity, reproducibility, and stability. In addition, we found that the cELISA and hemagglutination inhibition test showed a consistency of 100% and 87.91% for clinical and challenged chicken sera, respectively. Furthermore, the agreement rates were 90.4% and 85.7% between the cELISA and commercial IEDXX ELISA kit. Collectively, our developed nanobody-HRP fusion-based cELISA is an ideal method for monitoring IAV infection in different species.
Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Anticorpos de Domínio Único , Animais , Humanos , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática/métodos , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Humana/diagnóstico , Reprodutibilidade dos Testes , Suínos , Aves DomésticasRESUMO
Polyethylene terephthalate (PET) is a major component of microplastic contamination globally, which is now detected in pristine environments including Polar and mountain glaciers. As a carbon-rich molecule, PET could be a carbon source for microorganisms dwelling in glacier habitats. Thus, glacial microorganisms may be potential PET degraders with novel PET hydrolases. Here, we obtained 414 putative PET hydrolase sequences by searching a global glacier metagenome dataset. Metagenomes from the Alps and Tibetan glaciers exhibited a higher relative abundance of putative PET hydrolases than those from the Arctic and Antarctic. Twelve putative PET hydrolase sequences were cloned and expressed, with one sequence (designated as GlacPETase) proven to degrade amorphous PET film with a similar performance as IsPETase, but with a higher thermostability. GlacPETase exhibited only 30% sequence identity to known active PET hydrolases with a novel disulphide bridge location and, therefore may represent a novel PET hydrolases class. The present work suggests that extreme carbon-poor environments may harbour a diverse range of known and novel PET hydrolases for carbon acquisition as an environmental adaptation mechanism.
Assuntos
Hidrolases , Polietilenotereftalatos , Polietilenotereftalatos/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Camada de Gelo , Plásticos , CarbonoRESUMO
PURPOSE OF REVIEW: Lung cancer is one of the most common malignant tumours worldwide. Metastasis is a serious influencing factor for poor treatment effect and shortened survival in lung cancer. But the complicated underlying molecular mechanisms of tumour metastasis remain unclear. In this review, we aim to further summarize and explore the underlying mechanisms of tumour-derived exosomes (TDEs) in lung cancer metastasis. RECENT FINDINGS: TDEs are actively produced and released by tumour cells and carry messages from tumour cells to normal or abnormal cells residing at close or distant sites. Many studies have shown that TDEs promote lung cancer metastasis and development through multiple mechanisms, including epithelial-mesenchymal transition, immunosuppression and the formation of a premetastatic niche. TDEs regulate these mechanisms to promote metastasis by carrying DNA, proteins, miRNA, mRNA, lncRNA and ceRNA. Further exploring TDEs related to metastasis may be a promising treatment strategy and deserve further investigation. SUMMARY: Overall, TDEs play a critical role in metastatic of lung cancer. Further studies are needed to explore the underlying mechanisms of TDEs in lung cancer metastasis.