Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(6): e2313661121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38300867

RESUMO

In the United States, estimates of excess deaths attributable to the COVID-19 pandemic have consistently surpassed reported COVID-19 death counts. Excess deaths reported to non-COVID-19 natural causes may represent unrecognized COVID-19 deaths, deaths caused by pandemic health care interruptions, and/or deaths from the pandemic's socioeconomic impacts. The geographic and temporal distribution of these deaths may help to evaluate which explanation is most plausible. We developed a Bayesian hierarchical model to produce monthly estimates of excess natural-cause mortality for US counties over the first 30 mo of the pandemic. From March 2020 through August 2022, 1,194,610 excess natural-cause deaths occurred nationally [90% PI (Posterior Interval): 1,046,000 to 1,340,204]. A total of 162,886 of these excess natural-cause deaths (90% PI: 14,276 to 308,480) were not reported to COVID-19. Overall, 15.8 excess deaths were reported to non-COVID-19 natural causes for every 100 reported COVID-19 deaths. This number was greater in nonmetropolitan counties (36.0 deaths), the West (Rocky Mountain states: 31.6 deaths; Pacific states: 25.5 deaths), and the South (East South Central states: 26.0 deaths; South Atlantic states: 25.0 deaths; West South Central states: 24.2 deaths). In contrast, reported COVID-19 death counts surpassed estimates of excess natural-cause deaths in metropolitan counties in the New England and Middle Atlantic states. Increases in reported COVID-19 deaths correlated temporally with increases in excess deaths reported to non-COVID-19 natural causes in the same and/or prior month. This suggests that many excess deaths reported to non-COVID-19 natural causes during the first 30 mo of the pandemic in the United States were unrecognized COVID-19 deaths.


Assuntos
COVID-19 , Humanos , Estados Unidos/epidemiologia , Pandemias , Teorema de Bayes , Causas de Morte , New England , Mortalidade
2.
Cell Mol Biol Lett ; 29(1): 88, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877424

RESUMO

Osteoarthritis (OA) is the most common degenerative joint disorder that causes disability in aged individuals, caused by functional and structural alterations of the knee joint. To investigate whether metabolic drivers might be harnessed to promote cartilage repair, a liquid chromatography-mass spectrometry (LC-MS) untargeted metabolomics approach was carried out to screen serum biomarkers in osteoarthritic rats. Based on the correlation analyses, α-ketoglutarate (α-KG) has been demonstrated to have antioxidant and anti-inflammatory properties in various diseases. These properties make α-KG a prime candidate for further investigation of OA. Experimental results indicate that α-KG significantly inhibited H2O2-induced cartilage cell matrix degradation and apoptosis, reduced levels of reactive oxygen species (ROS) and malondialdehyde (MDA), increased superoxide dismutase (SOD) and glutathione (GSH)/glutathione disulfide (GSSG) levels, and upregulated the expression of ETV4, SLC7A11 and GPX4. Further mechanistic studies observed that α-KG, like Ferrostatin-1 (Fer-1), effectively alleviated Erastin-induced apoptosis and ECM degradation. α-KG and Fer-1 upregulated ETV4, SLC7A11, and GPX4 at the mRNA and protein levels, decreased ferrous ion (Fe2+) accumulation, and preserved mitochondrial membrane potential (MMP) in ATDC5 cells. In vivo, α-KG treatment inhibited ferroptosis in OA rats by activating the ETV4/SLC7A11/GPX4 pathway. Thus, these findings indicate that α-KG inhibits ferroptosis via the ETV4/SLC7A11/GPX4 signaling pathway, thereby alleviating OA. These observations suggest that α-KG exhibits potential therapeutic properties for the treatment and prevention of OA, thereby having potential clinical applications in the future.


Assuntos
Ferroptose , Ácidos Cetoglutáricos , Osteoartrite , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Transdução de Sinais , Ferroptose/efeitos dos fármacos , Animais , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ratos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Masculino , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Ratos Sprague-Dawley , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
3.
Clin Infect Dis ; 76(3): e227-e233, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35737948

RESUMO

BACKGROUND: In January 2022, US guidelines shifted to recommend isolation for 5 days from symptom onset, followed by 5 days of mask-wearing. However, viral dynamics and variant and vaccination impact on culture conversion are largely unknown. METHODS: We conducted a longitudinal study on a university campus, collecting daily anterior nasal swabs for at least 10 days for reverse-transcription polymerase chain reaction (RT-PCR) testing and culture, with antigen rapid diagnostic testing (RDT) on a subset. We compared culture positivity beyond day 5, time to culture conversion, and cycle threshold trend when calculated from diagnostic test, from symptom onset, by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, and by vaccination status. We evaluated sensitivity and specificity of RDT on days 4-6 compared with culture. RESULTS: Among 92 SARS-CoV-2 RT-PCR-positive participants, all completed the initial vaccine series; 17 (18.5%) were infected with Delta and 75 (81.5%) with Omicron. Seventeen percent of participants had positive cultures beyond day 5 from symptom onset, with the latest on day 12. There was no difference in time to culture conversion by variant or vaccination status. For 14 substudy participants, sensitivity and specificity of day 4-6 RDT were 100% and 86%, respectively. CONCLUSIONS: The majority of our Delta- and Omicron-infected cohort culture-converted by day 6, with no further impact of booster vaccination on sterilization or cycle threshold decay. We found that rapid antigen testing may provide reassurance of lack of infectiousness, though guidance to mask for days 6-10 is supported by our finding that 17% of participants remained culture-positive after isolation.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Estudos Longitudinais , SARS-CoV-2/genética , COVID-19/diagnóstico , Estudos de Coortes , Imunização Secundária
4.
BMC Med ; 21(1): 468, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017426

RESUMO

INTRODUCTION: Prior reviews synthesized findings of studies on long-term cardiac complications of COVID-19. However, the reporting and methodological quality of these studies has not been systematically evaluated. Here, we conducted a systematic review and meta-analysis on long-term cardiac complications of COVID-19 and examined patterns of reported findings by study quality and characteristics. METHODS: We searched for studies examining long-term cardiac complications of COVID-19 that persisted for 4 weeks and over. A customized Newcastle-Ottawa scale (NOS) was used to evaluate the quality of included studies. Meta-analysis was performed to generate prevalence estimates of long-term cardiac complications across studies. Stratified analyses were further conducted to examine the prevalence of each complication by study quality and characteristics. The GRADE approach was used to determine the level of evidence for complications included in the meta-analysis. RESULTS: A total number of 150 studies describing 57 long-term cardiac complications were included in this review, and 137 studies reporting 17 complications were included in the meta-analysis. Only 25.3% (n = 38) of studies were of high quality based on the NOS quality assessment. Chest pain and arrhythmia were the most widely examined long-term complications. When disregarding study quality and characteristics, summary prevalence estimates for chest and arrhythmia were 9.79% (95% CI 7.24-13.11) and 8.22% (95% CI 6.46-10.40), respectively. However, stratified analyses showed that studies with low-quality scores, small sample sizes, unsystematic sampling methods, and cross-sectional design were more likely to report a higher prevalence of complications. For example, the prevalence of chest pain was 22.17% (95% CI 14.40-32.55), 11.08% (95% CI 8.65-14.09), and 3.89% (95% CI 2.49-6.03) in studies of low, medium, and high quality, respectively. Similar patterns were observed for arrhythmia and other less examined long-term cardiac complications. CONCLUSION: There is a wide spectrum of long-term cardiac complications of COVID-19. Reported findings from previous studies are strongly related to study quality, sample sizes, sampling methods, and designs, underscoring the need for high-quality epidemiologic studies to characterize these complications and understand their etiology.


Assuntos
COVID-19 , Humanos , COVID-19/complicações , COVID-19/epidemiologia , Estudos Transversais , Arritmias Cardíacas/epidemiologia , Arritmias Cardíacas/etiologia , Dor no Peito
5.
PLoS Comput Biol ; 18(9): e1010434, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36048890

RESUMO

The reproductive number is an important metric that has been widely used to quantify the infectiousness of communicable diseases. The time-varying instantaneous reproductive number is useful for monitoring the real-time dynamics of a disease to inform policy making for disease control. Local estimation of this metric, for instance at a county or city level, allows for more targeted interventions to curb transmission. However, simultaneous estimation of local reproductive numbers must account for potential sources of heterogeneity in these time-varying quantities-a key element of which is human mobility. We develop a statistical method that incorporates human mobility between multiple regions for estimating region-specific instantaneous reproductive numbers. The model also can account for exogenous cases imported from outside of the regions of interest. We propose two approaches to estimate the reproductive numbers, with mobility data used to adjust incidence in the first approach and to inform a formal priori distribution in the second (Bayesian) approach. Through a simulation study, we show that region-specific reproductive numbers can be well estimated if human mobility is reasonably well approximated by available data. We use this approach to estimate the instantaneous reproductive numbers of COVID-19 for 14 counties in Massachusetts using CDC case report data and the human mobility data collected by SafeGraph. We found that, accounting for mobility, our method produces estimates of reproductive numbers that are distinct across counties. In contrast, independent estimation of county-level reproductive numbers tends to produce similar values, as trends in county case-counts for the state are fairly concordant. These approaches can also be used to estimate any heterogeneity in transmission, for instance, age-dependent instantaneous reproductive number estimates. As people are more mobile and interact frequently in ways that permit transmission, it is important to account for this in the estimation of the reproductive number.


Assuntos
COVID-19 , Doenças Transmissíveis , Teorema de Bayes , COVID-19/epidemiologia , Humanos , Reprodução , SARS-CoV-2
6.
Mol Biol Rep ; 50(4): 3155-3166, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36696024

RESUMO

BACKGROUND: Chondrocytes are the only cell components in the cartilage, which has the poor regeneration ability. Thus, repairing damaged cartilage remains a huge challenge. Sika deer antlers are mainly composed of cartilaginous tissues that have an astonishing capacity for repair and renewal. Our previous study has demonstrated the transforming growth factor ß (TGF-ß1) is considered to be a key molecule involved in rapid growth, with the strongest expression in the cartilage layer. However, it remains to be clarified whether deer TGF-ß1 has significantly different function from other species such as mouse, and what is the molecular mechanism of regulating cartilage growth. METHODS: Primary chondrocytes was collected from new born mouse rib cartilage. The effect of TGF-ß1 on primary chondrocytes viability was elucidated by RNA sequencing (RNA-seq) technology combined with validation methods such as quantitative real-time polymerase chain reaction (qRT-PCR) and immunofluorescence assay (IFA). Differential expression genes were identified using the DEGseq package. RESULTS: Our results demonstrated that the overexpression of deer TGF-ß1 possibly promoted chondrocyte proliferation and extracellular matrix (ECM) synthesis, while simultaneously suppressing chondrocyte differentiation through regulating transcription factors, growth factors, ECM related genes, proliferation and differentiation marker genes, such as Comp, Fgfr3, Atf4, Stat1 etc., and signaling pathways such as the MAPK signaling pathway, inflammatory mediator regulation of TRP channels etc. In addition, by comparing the amino acid sequence and structures between the deer TGF-ß1 and mouse TGF-ß1, we found that deer TGF-ß1 and mouse TGF-ß1 proteins are mainly structurally different in arm domains, which is the main functional domain. Phenotypic identification results showed that deer TGF-ß1 may has stronger function than mouse TGF-ß1. CONCLUSION: ​These results suggested that deer TGF-ß1 has the ability to promote chondrogenesis by regulating chondrocyte proliferation, differentiation and ECM synthesis. This study provides insights into the molecular mechanisms underlying the effects of deer TGF-ß1 on chondrocyte viability.


Assuntos
Condrócitos , Cervos , Animais , Camundongos , Condrócitos/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Cervos/genética , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Transdução de Sinais/genética , Proliferação de Células/genética , Células Cultivadas , Condrogênese
7.
J Biochem Mol Toxicol ; 37(1): e23227, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36177510

RESUMO

Clinical treatment of Osteoarthritis (OA) remains a challenge due to the poor self-regeneration ability of cartilage. Deer antler is the only cartilage tissue that can completely regenerate each year. Insulin-like growth factor 1 (IGF-1) is one of the major active components in the deer antler that participate in regulating the rapid regeneration of deer antler cartilage. This has led us to speculate that deer IGF-1 might potentially become a candidate drug for reducing damage and inflammation of OA. Thus, we aimed to explore the underlying mechanism of deer IGF-1 in chondrocyte proliferation, differentiation, and inflammation response. Deer, mouse, and human IGF-1 amino acid sequences and protein structures were aligned using CLUSTAL and PSIPRED. The underlying molecular mechanism of deer IGF-1 on primary chondrocytes was investigated by RNA-sequencing (RNA-seq) technology combined with various experiments. Cytokine interleukin-1ß (IL-1ß) was used to induce the inflammation response of primary chondrocytes. We found that deer IGF-1 was more similar to human IGF-1 than mouse IGF-1. qRT-PCR and immunofluorescence assay indicated that deer IGF-1 had stronger effects than mouse IGF-1. We also found that the deer IGF-1 enhanced the expression of cell proliferation, differentiation, and extracellular matrix (ECM)-related genes, but decreased the expression of ECM-degrading genes. Deer IGF-1 also attenuated the IL-1ß-induced inflammatory and ECM degradation in chondrocytes. This study provides insight into the molecular mechanisms of deer IGF-1 on primary chondrocyte viability and presents a candidate for combatting inflammatory responses in OA development.


Assuntos
Cervos , MicroRNAs , Osteoartrite , Animais , Humanos , Camundongos , Condrócitos/metabolismo , Interleucina-1beta/farmacologia , Interleucina-1beta/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Cervos/genética , Cervos/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Osteoartrite/metabolismo , MicroRNAs/metabolismo , Apoptose
8.
Acta Pharmacol Sin ; 44(1): 44-57, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35882957

RESUMO

It is of great clinical significance to develop potential novel strategies to prevent diabetic cardiovascular complications. Endothelial progenitor cell (EPC) dysfunction is a key contributor to diabetic vascular complications. In the present study we evaluated whether low-dose nifedipine could rescue impaired EPC-mediated angiogenesis and prevent cardiovascular complications in diabetic mice. Diabetes was induced in mice by five consecutive injections of streptozotocin (STZ, 60 mg·kg-1·d-1, i.p.). Diabetic mice were treated with low-dose nifedipine (1.5 mg·kg-1·d-1, i.g.) for six weeks. Then, circulating EPCs in the peripheral blood were quantified, and bone marrow-derived EPCs (BM-EPCs) were prepared. We showed that administration of low-dose nifedipine significantly increased circulating EPCs, improved BM-EPCs function, promoted angiogenesis, and reduced the cerebral ischemic injury in diabetic mice. Furthermore, we found that low-dose nifedipine significantly increased endothelial nitric oxide synthase (eNOS) expression and intracellular NO levels, and decreased the levels of intracellular O2.- and thrombospondin-1/2 (TSP-1/2, a potent angiogenesis inhibitor) in BM-EPCs of diabetic mice. In cultured BM-EPCs, co-treatment with nifedipine (0.1, 1 µM) dose-dependently protected against high-glucose-induced impairment of migration, and suppressed high-glucose-induced TSP-1 secretion and superoxide overproduction. In mice with middle cerebral artery occlusion, intravenous injection of diabetic BM-EPCs treated with nifedipine displayed a greater ability to promote local angiogenesis and reduce cerebral ischemic injury compared to injection of diabetic BM-EPCs treated with vehicle, and the donor-derived BM-EPCs homed to the recipient ischemic brain. In conclusion, low-dose nifedipine can enhance EPCs' angiogenic potential and protect against cerebral ischemic injury in diabetic mice. It is implied that chronic treatment with low-dose nifedipine may be a safe and economic manner to prevent ischemic diseases (including stroke) in diabetes.


Assuntos
Diabetes Mellitus Experimental , Células Progenitoras Endoteliais , Camundongos , Animais , Células Progenitoras Endoteliais/metabolismo , Nifedipino/farmacologia , Nifedipino/uso terapêutico , Trombospondina 1/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Isquemia/metabolismo , Neovascularização Fisiológica , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Células Cultivadas
9.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33148796

RESUMO

Human enterovirus D68 (EV-D68) has received considerable attention recently as a global reemergent pathogen because it causes severe respiratory tract infections and acute flaccid myelitis (AFM). The nonstructural protein 2A protease (2Apro) of EVs, which functions in the cleavage of host proteins, comprises a pivotal part of the viral immune evasion process. However, the pathogenic mechanism of EV-D68 is not fully understood. In this study, we found that EV-D68 inhibited antiviral type I interferon responses by cleaving tumor necrosis factor receptor-associated factor 3 (TRAF3), which is the key factor for type I interferon production. EV-D68 inhibited Sendai virus (SEV)-induced interferon regulatory factor 3 (IRF3) activation and beta interferon (IFN-ß) expression in HeLa and HEK293T cells. Furthermore, we demonstrated that EV-D68 and 2Apro were able to cleave the C-terminal region of TRAF3 in HeLa and HEK293T cells, respectively. A cysteine-to-alanine substitution at amino acid 107 (C107A) in the 2Apro protease resulted in the loss of cleavage activity to TRAF3, and mutation of glycine at amino acid 462 to alanine (G462A) in TRAF3 conferred resistance to 2Apro These results suggest that control of TRAF3 by 2Apro may be a mechanism EV-D68 utilizes to subvert host innate immune responses.IMPORTANCE Human enterovirus 68 (EV-D68) has received considerable attention recently as a global reemergent pathogen because it causes severe respiratory tract infections and acute flaccid myelitis. The nonstructural protein 2A protease (2Apro) of EV, which functions in cleavage of host proteins, comprises an essential part of the viral immune evasion process. However, the pathogenic mechanism of EV-D68 is not fully understood. Here, we show for the first time that EV-D68 inhibited antiviral type I interferon responses by cleaving tumor necrosis factor receptor-associated factor 3 (TRAF3). Furthermore, we identified the key cleavage site in TRAF3. Our study may suggest a new mechanism by which the 2Apro of EV facilitates subversion of host innate immune responses. These findings increase our understanding of EV-D68 infection and may help identify new antiviral targets against EV-D68.


Assuntos
Enterovirus Humano D/enzimologia , Infecções por Enterovirus/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Peptídeo Hidrolases/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Proteínas Virais/metabolismo , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/patologia , Infecções por Enterovirus/virologia , Células HEK293 , Células HeLa , Humanos , Interferon Tipo I/metabolismo , Peptídeo Hidrolases/genética , Proteólise , Fator 3 Associado a Receptor de TNF/genética , Proteínas Virais/genética
10.
Depress Anxiety ; 39(12): 824-834, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36281744

RESUMO

BACKGROUND: Psychiatric disorders have been associated with advanced epigenetic age in DNA methylation, yet this relationship has not been studied in the brain transcriptome. We examined transcriptomic age using an RNA-based algorithm recently developed by Ren and Kuan ("RNAAgeCalc") and the associations between posttraumatic stress disorder (PTSD), major depressive disorder (MDD), and alcohol use disorder with age-adjusted RNA age ("RNA age residuals") in three brain regions: dorsolateral prefrontal cortex, ventromedial prefrontal cortex (vmPFC), and motor cortex. METHODS: RNA sequencing was used to measure gene expression in postmortem brain tissue from the VA National PTSD Brain Bank (n = 94; 59% male). RESULTS: Linear models revealed that diagnoses of PTSD and/or MDD were positively associated with RNA age residuals in vmPFC only (p-adj = 0.012). Three genes in the RNAAgeCalc algorithm (KCNJ16, HYAL2, and CEBPB) were also differentially expressed in association with PTSD/MDD in vmPFC (p-adj = 6.45E-05 to 0.02). Enrichment analysis revealed that inflammatory and immune-related pathways were overrepresented (p-adj < 0.05) among the 43 genes in RNAAgeCalc that were also at least nominally associated with PTSD/MDD in vmPFC relative to the 448 RNAAgeCalc genes. Endothelial and mural cells were negatively associated with RNA age residuals in vmPFC (both p-adj = 0.028) and with PTSD/MDD (both p-adj = 0.017). CONCLUSIONS: Results highlight the importance of inflammation and immune system dysregulation in the link between psychopathology and accelerated cellular aging and raise the possibility that blood-brain barrier degradation may play an important role in stress-related accelerated brain aging.


Assuntos
Transtorno Depressivo Maior , Transtornos de Estresse Pós-Traumáticos , Humanos , Masculino , Feminino , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/psicologia , Transtorno Depressivo Maior/genética , Transcriptoma , Depressão , Encéfalo , RNA
11.
Biochem Genet ; 60(2): 676-706, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34410558

RESUMO

Cartilage is a resilient and smooth connective tissue that is found throughout the body. Among the three major types of cartilage, namely hyaline cartilage, elastic cartilage, and fibrocartilage, hyaline cartilage is the most widespread type of cartilage predominantly located in the joint surfaces (articular cartilage, AC). It remains a huge challenge for orthopedic surgeons to deal with AC damage since it has limited capacity for self-repair. Xiphoid cartilage (XC) is a vestigial cartilage located in the distal end of the sternum. XC-derived chondrocytes exhibit strong chondrogenic differentiation capacity. Thus, XC could become a potential donor site of chondrocytes for cartilage repair and regeneration. However, the underlying gene expression patterns between AC and XC are still largely unknown. In the present study, we used state-of-the-art RNA-seq technology combined with validation method to investigate the gene expression patterns between AC and XC, and identified a series of differentially expressed genes (DEGs) involved in chondrocyte commitment and differentiation including growth factors, transcription factors, and extracellular matrices. We demonstrated that the majority of significantly up-regulated DEGs (XC vs. AC) in XC were involved in regulating cartilage regeneration and repair, whereas the majority of significantly up-regulated DEGs (XC vs. AC) in AC were involved in regulating chondrocyte differentiation and maturation. This study has increased our knowledge of transcriptional networks in hyaline cartilage and elastic cartilage. It also supports the use of XC-derived chondrocytes as a potential cell resource for cartilage regeneration and repair.


Assuntos
Cartilagem Articular , Diferenciação Celular/genética , Condrócitos/metabolismo , Condrogênese , Expressão Gênica , Esterno
12.
Cell Mol Biol Lett ; 26(1): 42, 2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34602061

RESUMO

BACKGROUND: Keratinocytes and fibroblasts represent the major cell types in the epidermis and dermis of the skin and play a significant role in maintenance of skin homeostasis. However, the biological characteristics of keratinocytes and fibroblasts remain to be elucidated. The purpose of this study was to compare the gene expression pattern between keratinocytes and fibroblasts and to explore novel biomarker genes so as to provide potential therapeutic targets for skin-related diseases such as burns, wounds, and aging. METHODS: Skin keratinocytes and fibroblasts were isolated from newborn mice. To fully understand the heterogeneity of gene expression between keratinocytes and fibroblasts, differentially expressed genes (DEGs) between the two cell types were detected by RNA-seq technology. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the known genes of keratinocytes and fibroblasts and verify the RNA-seq results. RESULTS: Transcriptomic data showed a total of 4309 DEGs (fold-change > 1.5 and q-value < 0.05). Among them, 2197 genes were highly expressed in fibroblasts and included 10 genes encoding collagen, 16 genes encoding transcription factors, and 14 genes encoding growth factors. Simultaneously, 2112 genes were highly expressed in keratinocytes and included 7 genes encoding collagen, 14 genes encoding transcription factors, and 8 genes encoding growth factors. Furthermore, we summarized 279 genes specifically expressed in keratinocytes and 33 genes specifically expressed in fibroblasts, which may represent distinct molecular signatures of each cell type. Additionally, we observed some novel specific biomarkers for fibroblasts such as Plac8 (placenta-specific 8), Agtr2 (angiotensin II receptor, type 2), Serping1 (serpin peptidase inhibitor, clade G, member 1), Ly6c1 (lymphocyte antigen 6 complex, locus C1), Dpt (dermatopontin), and some novel specific biomarkers for keratinocytes such as Ly6a (lymphocyte antigen 6 complex, locus A) and Lce3c (late cornified envelope 3C), Ccer2 (coiled-coil glutamate-rich protein 2), Col18a1 (collagen, type XVIII, alpha 1) and Col17a1 (collagen type XVII, alpha 1). In summary, these data provided novel identifying biomarkers for two cell types, which can provide a resource of DEGs for further investigations.


Assuntos
Biomarcadores/metabolismo , Fibroblastos/metabolismo , Queratinócitos/metabolismo , Dermatopatias/metabolismo , Pele/metabolismo , Animais , Autoantígenos/metabolismo , Células Cultivadas , Masculino , Camundongos , Colágenos não Fibrilares/metabolismo , Análise de Sequência de RNA/métodos , Colágeno Tipo XVII
13.
Mol Biol Rep ; 47(8): 5773-5792, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32661874

RESUMO

Chondrocytes are the sole cell type present within cartilage, and play pivotal roles in controlling the formation and composition of health cartilage. Chondrocytes maintain cartilage homeostasis through proliferating, differentiating and synthesizing different types of extracellular matrices. Thus, the coordinated proliferation and differentiation of chondrocytes are essential for cartilage growth, repair and the conversion from cartilage to bone during the processes of bone formation and fracture healing. Runx3, a transcription factor that belongs to the Runx family, is significantly upregulated at the onset of cartilage mineralization and regulates both early and late markers of chondrocyte maturation. Therefore, Runx3 may serve as an accelerator of chondrocyte differentiation and maturation. However, the underlying molecular mechanism of Runx3 in regulating chondrocyte proliferation and differentiation remains largely to be elucidated. In the present study, we used state-of-the-art RNA-seq technology combined with validation methods to investigate the effect of Runx3 overexpression or silencing on primary chondrocyte proliferation and differentiation, and demonstrated that Runx3 overexpression possibly inhibited chondrocyte proliferation but accelerated differentiation, whereas Runx3 silencing possibly promoted chondrocyte proliferation but suppressed differentiation. Furthermore, Runx3 overexpression possibly decreased the expression levels of Sox9 and its downstream genes via Sox9 cartilage-specific enhancers, and vice versa for Runx3 silencing.


Assuntos
Osso e Ossos/fisiologia , Cartilagem/fisiologia , Condrócitos/fisiologia , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Animais , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Cartilagem/citologia , Cartilagem/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Biologia Computacional/métodos , Camundongos , Fenótipo , Análise de Sequência de RNA/métodos
14.
Cell Mol Biol Lett ; 25: 42, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944020

RESUMO

BACKGROUND: Deer antlers have become a valuable model for biomedical research due to the capacities of regeneration and rapid growth. However, the molecular mechanism of rapid antler growth remains to be elucidated. The aim of the present study was to compare and explore the molecular control exerted by the main beam and brow tine during rapid antler growth. METHODS: The main beams and brow tines of sika deer antlers were collected from Chinese sika deer (Cervus nippon) at the rapid growth stage. Comparative transcriptome analysis was conducted using RNA-Seq technology. Differential expression was assessed using the DEGseq package. Functional Gene Ontology (GO) enrichment analysis was accomplished using a rigorous algorithm according to the GO Term Finder tool, and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis was accomplished with the R function phyper, followed by the hypergeometric test and Bonferroni correction. Quantitative real-time polymerase chain reaction (qRT-PCR) was carried out to verify the RNA levels for differentially expressed mRNAs. RESULTS: The expression levels of 16 differentially expressed genes (DEGs) involved in chondrogenesis and cartilage development were identified as significantly upregulated in the main beams, including transcription factor SOX-9 (Sox9), collagen alpha-1(II) chain (Col2a1), aggrecan core protein (Acan), etc. However, the expression levels of 17 DEGs involved in endochondral ossification and bone formation were identified as significantly upregulated in the brow tines, including collagen alpha-1(X) chain (Col10a1), osteopontin (Spp1) and bone sialoprotein 2 (Ibsp), etc. CONCLUSION: These results suggest that the antler main beam has stronger growth capacity involved in chondrogenesis and cartilage development compared to the brow tine during rapid antler growth, which is mainly achieved through regulation of Sox9 and its target genes, whereas the antler brow tine has stronger capacities of endochondral bone formation and resorption compared to the main beam during rapid antler growth, which is mainly achieved through the genes involved in regulating osteoblast and osteoclast activities. Thus, the current research has deeply expanded our understanding of the intrinsic molecular regulation displayed by the main beam and brow tine during rapid antler growth.


Assuntos
Chifres de Veado/crescimento & desenvolvimento , Cervos/genética , Transcriptoma/genética , Animais , Condrogênese/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Ontologia Genética , Genoma/genética , Osteogênese/genética , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos
16.
Bioinformatics ; 33(14): 2123-2130, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28334222

RESUMO

MOTIVATION: Over the past decade, there has been a remarkable improvement in our understanding of the role of genetic variation in complex human diseases, especially via genome-wide association studies. However, the underlying molecular mechanisms are still poorly characterized, impending the development of therapeutic interventions. Identifying genetic variants that influence the expression level of a gene, i.e. expression quantitative trait loci (eQTLs), can help us understand how genetic variants influence traits at the molecular level. While most eQTL studies focus on identifying mean effects on gene expression using linear regression, evidence suggests that genetic variation can impact the entire distribution of the expression level. Motivated by the potential higher order associations, several studies investigated variance eQTLs. RESULTS: In this paper, we develop a Quantile Rank-score based test (QRank), which provides an easy way to identify eQTLs that are associated with the conditional quantile functions of gene expression. We have applied the proposed QRank to the Genotype-Tissue Expression project, an international tissue bank for studying the relationship between genetic variation and gene expression in human tissues, and found that the proposed QRank complements the existing methods, and identifies new eQTLs with heterogeneous effects across different quantile levels. Notably, we show that the eQTLs identified by QRank but missed by linear regression are associated with greater enrichment in genome-wide significant SNPs from the GWAS catalog, and are also more likely to be tissue specific than eQTLs identified by linear regression. AVAILABILITY AND IMPLEMENTATION: An R package is available on R CRAN at https://cran.r-project.org/web/packages/QRank . CONTACT: xs2148@cumc.columbia.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Perfilação da Expressão Gênica/métodos , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Locos de Características Quantitativas , Software , Biologia Computacional/métodos , Simulação por Computador , Humanos
17.
Virus Genes ; 54(4): 484-492, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29777445

RESUMO

Human enterovirus D68 (EV-D68) is a highly contagious virus, which causes respiratory tract infections. However, no effective vaccines are currently available for controlling EV-D68 infection. Here, we developed a reverse genetics system to recover EV-D68 minireplicons and infectious EV-D68 from transfected plasmids using the RNA polymerase I (Pol I) promoter. The EV-D68 minireplicons contained the luciferase reporter gene, which flanked by the non-coding regions of the EV-D68 RNA. The luciferase signals could be detected in cells after transfection and Pol I promoter-mediated luciferase signal was significantly stronger than that mediated by the T7 promoter. Furthermore, recombinant viruses were generated by transfecting plasmids that contained the genomic RNA segments of EV-D68, under the control of Pol I promoter into 293T cells or RD cells. On plaque morphology and growth kinetics, the rescued virus and parental virus were indistinguishable. In addition, we showed that the G394C mutation disrupts the viral 5'-UTR structure and suppresses the viral cap-independent translation. This reverse genetics system for EV-D68 recovery can greatly facilitate research into EV-D68 biology. Moreover, this system could accelerate the development of EV-D68 vaccines and anti-EV-D68 drugs.


Assuntos
Enterovirus Humano D/genética , Infecções por Enterovirus/virologia , RNA Polimerase I/genética , Genética Reversa , Linhagem Celular , DNA Complementar , Ordem dos Genes , Engenharia Genética , Humanos , Mutação , Conformação de Ácido Nucleico , Plasmídeos/genética , Regiões Promotoras Genéticas , RNA Polimerase I/metabolismo , RNA Viral , Infecções Respiratórias/virologia , Genética Reversa/métodos , Ensaio de Placa Viral , Replicação Viral
19.
Artigo em Zh | MEDLINE | ID: mdl-26653377

RESUMO

OBJECTIVE: To determine the normal reference value of pyrrole adducts in urine in young people in a university in Shandong, China, and to provide a reliable basis for the clinical diagnosis of n-hexane poisoning. METHODS: A total of 240 college students were randomly selected. After excluding 32 ineligible students, 208 subjects were included in this study, consisting of 104 males and 104 females, with a mean age of 21?3 years (range: 18 to 24 years). Morning urine was collected from each subject. The content of pyrrole adducts was determined by chromatometry. RESULTS: The content of pyrrole adducts in both male and female obeyed a positively skewed distribution. The median level of pyrrole adducts in male subjects was 0.88 nmol/ml, and the reference value was 0.14-3.92 nmol/ml. The median level of pyrrole adducts in female subjects was 0.93 nmol/ ml, and the reference value was 0.09-3.27 nmol/ml. Student's t test identified no statistical difference in pyrrole adduct level between male and female subjects (t=0.15, P>0.05). CONCLUSION: The median level of pyrrole adducts in normal young people is 0.91 nmol/ml, and the reference value is 0.11-3.95 nmol/ml.


Assuntos
Pirróis/urina , Adolescente , China , Feminino , Hexanos/intoxicação , Humanos , Masculino , Valores de Referência , Universidades , Adulto Jovem
20.
Iran J Basic Med Sci ; 27(1): 16-23, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164486

RESUMO

Objectives: Inadequate cytotrophoblast migration and invasion are speculated to result in preeclampsia, which is a pro-inflammatory condition. Sodium dichloroacetate (DCA) exerts anti-inflammatory actions. Thus,we sought to investigate the effect of DCA on the migration function of the lipopolysaccharide (LPS)-stimulated human-trophoblast-derived cell line (HTR-8/SVneo). Materials and Methods: HTR-8/SVneo cells were treated with LPS to suppress cell migration. Cell migration was examined by both scratch wound healing assay and transwell migration assay. Western blotting was used to analyze the expression levels of toll-like receptor-4 (TLR4), nuclear factor-κB (NF-κB), TNF-α, IL-1ß, and IL-6 in the cells. Results: DCA reversed LPS-induced inhibition of migration in HTR-8/SVneo cells. Furthermore, DCA significantly suppressed LPS-induced activation of TLR4, phosphorylation of NF-κB (p65), translocation of p65 into the nucleus, and the production of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6). Treatment with inhibitors of TLR4 signal transduction (CLI095 or MD2-TLR-4-IN-1) reduced LPS-induced overexpression of pro-inflammatory cytokines, and a synergistic effect was found between TLR4 inhibitors and DCA in HTR-8/SVneo cells. Conclusion: DCA improved trophoblast cell migration function by suppressing LPS-induced inflammation, at least in part, via the TLR4/NF-κB signaling pathway. This result indicates that DCA might be a potential therapeutic candidate for human pregnancy-related complications associated with trophoblast disorder.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa