Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Stroke Cerebrovasc Dis ; 32(1): 106901, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36434857

RESUMO

OBJECTIVES: Ischemic stroke causes high morbidity, mortality and health burden in the world. MiR-342-5p was associated with Alzheimer's disease and cardio-protection. Herein, we aimed to reveal effects of miR-342-5p on cerebral ischemia injury as well as novel targets for stroke. MATERIALS AND METHODS: AgomiR-342-5p was intracerebroventricularly injected into the middle cerebral artery occlusion (MCAO) mouse models to evaluate functions of miR-342-5p on cerebral ischemia. RT-qPCR and western blot assays were used to evaluate genes expression. Oxygen-glucose deprivation (OGD) was used as an in vitro model for ischemia. Viability and apoptosis ratio of neurons was evaluated by CCK-8, LDH release detection, and flow cytometry. The potential targets of miR-342-5p were predicted by Targetscan, and their interaction was confirmed by luciferase assay. RESULTS: The intervention of miR-342-5p effectively attenuated ischemic injury in MCAO mice. MiR-342-5p overexpression could protect neurons against OGD-induced injury, as revealed by increased cell viability and BCL2 expression, and decreased LDH release, apoptosis ratio, and BAX expression in OGD-induced neurons. Mechanically, miR-342-5p could directly bound with CCAR2 to inhibit its expression. Overexpressing CARR2 aggravated the OGD-induced injury of neurons, which was partly restrained by overexpressing miR-342-5p reversed. Furthermore, miR-342-5p/CARR2 axis regulates Akt/NF-κB signaling pathway in vitro as well as in vivo cerebral ischemia models. CONCLUSIONS: MiR-342-5p inhibited neuron apoptosis by regulating Akt/NF-kB signaling pathway via CCAR2 suppression. Our findings revealed the neuroprotection of miR-342-5p in cerebral ischemia.


Assuntos
Isquemia Encefálica , MicroRNAs , Traumatismo por Reperfusão , Camundongos , Animais , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Oxigênio/metabolismo , Apoptose , Neurônios/metabolismo , Glucose , Traumatismo por Reperfusão/metabolismo
2.
Exp Mol Pathol ; 109: 16-24, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31067440

RESUMO

Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by loss of dopaminergic neurons in the substantia nigra. Recently, microRNAs (miRNAs) were emerging as important mediators in dopaminergic neuron biology. This study determined miR-410 expression in the 6-hydroxydopamine (6-OHDA)-induced in vitro cellular model of PD and explored the mechanistic role of miR-410 in the modulation of neuronal cell viability and apoptosis. Our data showed that 6-OHDA concentration-dependently suppressed neuronal cell viability and miR-410 expression in SH-SY5Y and PC12 cells. Overexpression of miR-410 partially restored the effects of 6-OHDA on neuronal cell viability, apoptosis, capsase-3 activity as well as reactive oxygen species (ROS) production. On the other hand, inhibition of miR-410 decreased neuronal cell viability and increased apoptotic rates, capase-3 activity as well as ROS production. Furthermore, the potential targets of miR-410 were predicted by TargetScan tool, and we verified that phosphatase and tensin homolog (PTEN) was a target of miR-410 as confirmed by the dual-luciferase reporter assay. MiR-410 overexpression attenuated PTEN expression and mediated the effects in the 6-OHDA-treated cells via targeting PTEN in SH-SY5Y and PC12 cells. Furthermore, 6-OHDA treatment suppressed the protein expression of phosphorylated AKT and phosphorylated mTOR, which was partially attenuated by miR-410 overexpression in SH-SY5Y and PC12 cells. MiR-410 overexpression increased phosphorylated AKT and phosphorylated mTOR protein expression, and this effect was attenuated by PTEN overexpression in both SH-SY5Y and PC12 cells. Collectively, this is the first study to demonstrate the neuroprotective effects of miR-410 in a 6-OHDA-induced cellular model of PD, and our data implied that miR-410 exerted its neuroprotective effects via regulating PTEN/AKT/mTOR signaling axis. The present study may suggest new paradigm to study the pathology of PD.


Assuntos
MicroRNAs/genética , PTEN Fosfo-Hidrolase/metabolismo , Transtornos Parkinsonianos/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Fármacos Neuroprotetores/metabolismo , Oxidopamina/toxicidade , Células PC12 , PTEN Fosfo-Hidrolase/genética , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa