Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Int J Legal Med ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38858273

RESUMO

Monozygotic (MZ) twins cannot be distinguished using conventional forensic STR typing because they present identical STR genotypings. However, MZ twins do not always live in the same environment and often have different dietary and other lifestyle habits. Metabolic profiles are deyermined by individual characteristics and are also influenced by the environment in which they live. Therefore, they are potential markers capable of identifying MZ twins. Moreover, the production of proteins varies from organism to organism and is influenced by both the physiological state of the body and the external environment. Hence, we used metabolomics and proteomics to identify metabolites and proteins in peripheral blood to discriminate MZ twins. We identified 1749 known metabolites and 622 proteins in proteomic analysis. The metabolic profiles of four pairs of MZ twins revealed minor differences in intra-MZ twins and major differences in inter-MZ twins. Each pair of MZ twins exhibited distinct characteristics, and four metabolites-methyl picolinate, acesulfame, paraxanthine, and phenylbenzimidazole sulfonic acid-were observed in all four MZ twin pairs. These four differential exogenous metabolites conincidently show that the different external environments and life styles can be well distinguished by metabolites, considering that twins do not all have the same eating habits and living environments. Moreover, MZ twins showed different protein profiles in serum but not in whole blood. Thus, our results indicate that differential metabolites provide potential biomarkers for the personal identification of MZ twins in forensic medicine.

3.
Biomed Pharmacother ; 175: 116747, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744217

RESUMO

Schizophrenia, influenced by genetic and environmental factors, may involve epigenetic alterations, notably histone modifications, in its pathogenesis. This review summarizes various histone modifications including acetylation, methylation, phosphorylation, ubiquitination, serotonylation, lactylation, palmitoylation, and dopaminylation, and their implications in schizophrenia. Current research predominantly focuses on histone acetylation and methylation, though other modifications also play significant roles. These modifications are crucial in regulating transcription through chromatin remodeling, which is vital for understanding schizophrenia's development. For instance, histone acetylation enhances transcriptional efficiency by loosening chromatin, while increased histone methyltransferase activity on H3K9 and altered histone phosphorylation, which reduces DNA affinity and destabilizes chromatin structure, are significant markers of schizophrenia.


Assuntos
Histonas , Esquizofrenia , Esquizofrenia/metabolismo , Esquizofrenia/genética , Humanos , Histonas/metabolismo , Animais , Epigênese Genética , Processamento de Proteína Pós-Traducional , Acetilação , Metilação , Fosforilação , Montagem e Desmontagem da Cromatina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa