RESUMO
In Parkinson's disease (PD), reduced dopamine levels in the basal ganglia have been associated with altered neuronal firing and motor dysfunction. It remains unclear whether the altered firing rate or pattern of basal ganglia neurons leads to parkinsonism-associated motor dysfunction. In the present study, we show that increased histaminergic innervation of the entopeduncular nucleus (EPN) in the mouse model of PD leads to activation of EPN parvalbumin (PV) neurons projecting to the thalamic motor nucleus via hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to postsynaptic H2R. Simultaneously, this effect is negatively regulated by presynaptic H3R activation in subthalamic nucleus (STN) glutamatergic neurons projecting to the EPN. Notably, the activation of both types of receptors ameliorates parkinsonism-associated motor dysfunction. Pharmacological activation of H2R or genetic upregulation of HCN2 in EPNPV neurons, which reduce neuronal burst firing, ameliorates parkinsonism-associated motor dysfunction independent of changes in the neuronal firing rate. In addition, optogenetic inhibition of EPNPV neurons and pharmacological activation or genetic upregulation of H3R in EPN-projecting STNGlu neurons ameliorate parkinsonism-associated motor dysfunction by reducing the firing rate rather than altering the firing pattern of EPNPV neurons. Thus, although a reduced firing rate and more regular firing pattern of EPNPV neurons correlate with amelioration in parkinsonism-associated motor dysfunction, the firing pattern appears to be more critical in this context. These results also confirm that targeting H2R and its downstream HCN2 channel in EPNPV neurons and H3R in EPN-projecting STNGlu neurons may represent potential therapeutic strategies for the clinical treatment of parkinsonism-associated motor dysfunction.
Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Núcleo Subtalâmico , Camundongos , Animais , Núcleo Entopeduncular , Tálamo , Transtornos Parkinsonianos/terapia , Receptores HistamínicosRESUMO
Parkinson's disease (PD) is a motor disorder resulting from dopaminergic neuron degeneration in the substantia nigra caused by age, genetics, and environment. The disease severely impacts a patient's quality of life and can even be life-threatening. The hyperpolarization-activated cyclic nucleotide-gated (HCN) channel is a member of the HCN1-4 gene family and is widely expressed in basal ganglia nuclei. The hyperpolarization-activated current mediated by the HCN channel has a distinct impact on neuronal excitability and rhythmic activity associated with PD pathogenesis, as it affects the firing activity, including both firing rate and firing pattern, of neurons in the basal ganglia nuclei. This review aims to comprehensively understand the characteristics of HCN channels by summarizing their regulatory role in neuronal firing activity of the basal ganglia nuclei. Furthermore, the distribution and characteristics of HCN channels in each nucleus of the basal ganglia group and their effect on PD symptoms through modulating neuronal electrical activity are discussed. Since the roles of the substantia nigra pars compacta and reticulata, as well as globus pallidus externus and internus, are distinct in the basal ganglia circuit, they are individually described. Lastly, this investigation briefly highlights that the HCN channel expressed on microglia plays a role in the pathological process of PD by affecting the neuroinflammatory response.
Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Qualidade de Vida , Gânglios da Base/fisiologia , Substância NegraRESUMO
Anxiety commonly co-occurs with obsessive-compulsive disorder (OCD). Both of them are closely related to stress. However, the shared neurobiological substrates and therapeutic targets remain unclear. Here we report an amelioration of both anxiety and OCD via the histamine presynaptic H3 heteroreceptor on glutamatergic afferent terminals from the prelimbic prefrontal cortex (PrL) to the nucleus accumbens (NAc) core, a vital node in the limbic loop. The NAc core receives direct hypothalamic histaminergic projections, and optogenetic activation of hypothalamic NAc core histaminergic afferents selectively suppresses glutamatergic rather than GABAergic synaptic transmission in the NAc core via the H3 receptor and thus produces an anxiolytic effect and improves anxiety- and obsessive-compulsive-like behaviors induced by restraint stress. Although the H3 receptor is expressed in glutamatergic afferent terminals from the PrL, basolateral amygdala (BLA), and ventral hippocampus (vHipp), rather than the thalamus, only the PrL- and not BLA- and vHipp-NAc core glutamatergic pathways among the glutamatergic afferent inputs to the NAc core is responsible for co-occurrence of anxiety- and obsessive-compulsive-like behaviors. Furthermore, activation of the H3 receptor ameliorates anxiety and obsessive-compulsive-like behaviors induced by optogenetic excitation of the PrL-NAc glutamatergic afferents. These results demonstrate a common mechanism regulating anxiety- and obsessive-compulsive-like behaviors and provide insight into the clinical treatment strategy for OCD with comorbid anxiety by targeting the histamine H3 receptor in the NAc core.
Assuntos
Transtornos de Ansiedade/tratamento farmacológico , Agonistas dos Receptores Histamínicos/administração & dosagem , Núcleo Accumbens/fisiopatologia , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Receptores Histamínicos H3/metabolismo , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/fisiopatologia , Animais , Transtornos de Ansiedade/etiologia , Transtornos de Ansiedade/fisiopatologia , Transtornos de Ansiedade/psicologia , Modelos Animais de Doenças , Glutamatos/metabolismo , Histamina/metabolismo , Antagonistas dos Receptores Histamínicos H3/administração & dosagem , Humanos , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/fisiopatologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Accumbens/citologia , Núcleo Accumbens/efeitos dos fármacos , Transtorno Obsessivo-Compulsivo/etiologia , Transtorno Obsessivo-Compulsivo/fisiopatologia , Transtorno Obsessivo-Compulsivo/psicologia , Optogenética , Técnicas de Patch-Clamp , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiopatologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Transgênicos , Técnicas Estereotáxicas , Estresse Psicológico/complicações , Estresse Psicológico/psicologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologiaRESUMO
Spinal α-motoneurons directly innervate skeletal muscles and function as the final common path for movement and behavior. The processes that determine the excitability of motoneurons are critical for the execution of motor behavior. In fact, it has been noted that spinal motoneurons receive various neuromodulatory inputs, especially monoaminergic one. However, the roles of histamine and hypothalamic histaminergic innervation on spinal motoneurons and the underlying ionic mechanisms are still largely unknown. In the present study, by using the method of intracellular recording on rat spinal slices, we found that activation of either H1 or H2 receptor potentiated repetitive firing behavior and increased the excitability of spinal α-motoneurons. Both of blockage of K+ channels and activation of Na+-Ca2+ exchangers were involved in the H1 receptor-mediated excitation on spinal motoneurons, whereas the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels were responsible for the H2 receptor-mediated excitation. The results suggest that, through switching functional status of ion channels and exchangers coupled to histamine receptors, histamine effectively biases the excitability of the spinal α-motoneurons. In this way, the hypothalamospinal histaminergic innervation may directly modulate final motor outputs and actively regulate spinal motor reflexes and motor execution.
Assuntos
Histamina , Neurônios Motores , Animais , Histamina/farmacologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Ratos , Receptores Histamínicos H2/metabolismo , Trocador de Sódio e Cálcio/metabolismoRESUMO
The subthalamic nucleus (STN) is the only excitatory glutamatergic nucleus in the basal ganglia circuitry. It not only is a key node in the classical indirect pathway, but also forms the "hyperdirect" pathway directly connecting the cortex, and even is implicated as a pacemaker for activity of whole basal ganglia. Due to the key position of STN in the basal ganglia circuitry, the STN is an optimal target for deep brain stimulation (DBS) in the neurosurgical treatment of Parkinson's disease (PD). However, the therapeutic mechanisms underlying the amelioration of parkinsonian motor dysfunctions induced by DBS on STN remain enigmatic. This paper reviews recent progresses in the studies on the input-output configurations and functions of STN in the basal ganglia circuitry, and summarizes the hypotheses for mechanisms of DBS for the treatment of motor dysfunctions in PD. Studying on the DBS mechanisms will not only help to develop strategies for treatment of PD, but also contribute to the understanding of functions of the basal ganglia circuitry.
Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Animais , Gânglios da Base/fisiologia , HumanosRESUMO
The central noradrenergic system, originating mainly from the locus coeruleus in the brainstem, plays an important role in many physiological functions, including arousal and attention, learning and memory, anxiety, and nociception. However, little is known about the roles of norepinephrine (NE) in somatic motor control. Therefore, using extracellular recordings on rat brainstem slices and quantitative real-time RT-PCR, we investigate the effect and mechanisms of NE on neuronal activity in the inferior vestibular nucleus (IVN), the largest nucleus in the vestibular nuclear complex, which holds an important position in integration of information signals controlling body posture. Here, we report that NE elicits an excitatory response on IVN neurons in a concentration-dependent manner. Activation of α1 - and ß2 -adrenergic receptors (ARs) induces an increase in firing rate of IVN neurons, whereas activation of α2 -ARs evokes a decrease in firing rate of IVN neurons. Therefore, the excitation induced by NE on IVN neurons is a summation of the excitatory components mediated by coactivation of α1 - and ß2 -ARs and the inhibitory component induced by α2 -ARs. Accordingly, α1 -, α2 -, and ß2 -AR mRNAs are expressed in the IVN. Although ß1 -AR mRNAs are also detected, they are not involved in the direct electrophysiological effect of NE on IVN neurons. All these results demonstrate that NE directly regulates the activity of IVN neurons via α1 -, α2 -, and ß2 -ARs and suggest that the central noradrenergic system may actively participate in IVN-mediated vestibular reflexes and postural control. © 2016 Wiley Periodicals, Inc.
Assuntos
Neurônios/efeitos dos fármacos , Norepinefrina/farmacologia , Receptores Adrenérgicos/biossíntese , Núcleos Vestibulares/citologia , Núcleos Vestibulares/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Fenômenos Eletrofisiológicos/genética , Feminino , Técnicas In Vitro , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos/efeitos dos fármacos , Receptores Adrenérgicos/genéticaRESUMO
Orexin deficiency results in cataplexy, a motor deficit characterized by sudden loss of muscle tone, strongly indicating an active role of central orexinergic system in motor control. However, effects of orexin on neurons in central motor structures are still largely unknown. Our previous studies have revealed that orexin excites neurons in the cerebellar nuclei and lateral vestibular nucleus, two important subcortical motor centers for control of muscle tone. Here, we report that both orexin-A and orexin-B depolarizes and increases the firing rate of neurons in the inferior vestibular nucleus (IVN), the largest nucleus in the vestibular nuclear complex and holding an important position in integration of information signals in the control of body posture. TTX does not block orexin-induced excitation on IVN neurons, suggesting a direct postsynaptic action of the neuropeptide. Furthermore, bath application of orexin induces an inward current on IVN neurons in a concentration-dependent manner. SB334867 and TCS-OX2-29, specific OX1 and OX2 receptor antagonists, blocked the excitatory effect of orexin, and [Ala(11), D-Leu(15)]-orexin B, a selective OX2 receptor agonist, mimics the orexin-induced inward current on IVN neurons. qPCR and immunofluorescence results show that both OX1 and OX2 receptor mRNAs and proteins are expressed and localized in the rat IVN. These results demonstrate that orexin excites the IVN neurons by co-activation of both OX1 and OX2 receptors, suggesting that via the direct modulation on the IVN, the central orexinergic system may actively participate in the central vestibular-mediated postural and motor control.
Assuntos
Neurônios/fisiologia , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Núcleos Vestibulares/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Benzoxazóis/farmacologia , Relação Dose-Resposta a Droga , Isoquinolinas/farmacologia , Naftiridinas , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Antagonistas dos Receptores de Orexina/farmacologia , Orexinas/antagonistas & inibidores , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Técnicas de Cultura de Tecidos , Ureia/análogos & derivados , Ureia/farmacologia , Núcleos Vestibulares/efeitos dos fármacosRESUMO
It has long been known that serotonergic afferent inputs are the third largest afferent population in the cerebellum after mossy fibers and climbing fibers. However, the role of serotonergic inputs in cerebellar-mediated motor behaviors is still largely unknown. Here, we show that only 5-HT2A receptors among the 5-HT2 receptor subfamily are expressed and localized in the rat cerebellar fastigial nucleus (FN), one of the ultimate outputs of the spinocerebellum precisely regulating trunk and limb movements. Remarkably, selective activation of 5-HT2A receptors evokes a postsynaptic excitatory effect on FN neurons in a concentration-dependent manner in vitro, which is in accord with the 5-HT-elicited excitation on the same tested neurons. Furthermore, selective 5-HT2A receptor antagonist M100907 concentration-dependently blocks the excitatory effects of 5-HT and TCB-2, a 5-HT2A receptor agonist, on FN neurons. Consequently, microinjection of 5-HT into bilateral FNs significantly promotes rat motor performances on accelerating rota-rod and balance beam and narrows stride width rather than stride length in locomotion gait. All these motor behavioral effects are highly consistent with those of selective activation of 5-HT2A receptors in FNs, and blockage of the component of 5-HT2A receptor-mediated endogenous serotonergic inputs in FNs markedly attenuates these motor performances. All these results demonstrate that postsynaptic 5-HT2A receptors greatly contribute to the 5-HT-mediated excitatory effect on cerebellar FN neurons and promotion of the FN-related motor behaviors, suggesting that serotonergic afferent inputs may actively participate in cerebellar motor control through their direct modulation on the final output of the spinocerebellum.
Assuntos
Núcleos Cerebelares/metabolismo , Potenciais Pós-Sinápticos Excitadores , Locomoção , Receptor 5-HT2A de Serotonina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Animais , Núcleos Cerebelares/citologia , Núcleos Cerebelares/fisiologia , Fluorbenzenos/farmacologia , Masculino , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina/genética , Neurônios Serotoninérgicos/fisiologia , Antagonistas da Serotonina/farmacologiaRESUMO
Aged patients often suffer poorer neurological recovery than younger patients after traumatic brain injury (TBI), but the mechanisms underlying this difference remain unclear. Here, we demonstrate abnormal myelopoiesis characterized by increased neutrophil and classical monocyte output but impaired nonclassical patrolling monocyte population in aged patients with TBI as well as in an aged murine TBI model. Retrograde and anterograde nerve tracing indicated that increased adrenergic input through the central amygdaloid nucleus-bone marrow axis drives abnormal myelopoiesis after TBI in a ß2-adrenergic receptor-dependent manner, which is notably enhanced in aged mice after injury. Selective blockade of ß2-adrenergic receptors rebalances abnormal myelopoiesis and improves the outcomes of aged mice after TBI. We therefore demonstrate that increased ß2-adrenergic input-driven abnormal myelopoiesis exacerbates post-TBI neuroinflammation in the aged, representing a mechanism underlying the poorer recovery of aged patients and that blockade of ß2-adrenergic receptor is a potential approach to promote neurological recovery after TBI.
Assuntos
Lesões Encefálicas Traumáticas , Mielopoese , Doenças Neuroinflamatórias , Receptores Adrenérgicos beta 2 , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/patologia , Neutrófilos/metabolismo , Receptores Adrenérgicos beta 2/metabolismoRESUMO
The superior vestibular nucleus (SVN), which holds a key position in vestibulo-ocular reflexes and nystagmus, receives direct hypothalamic histaminergic innervations. By using rat brainstem slice preparations and extracellular unitary recordings, we investigated the effect of histamine on SVN neurons and the underlying receptor mechanisms. Bath application of histamine evoked an excitatory response of the SVN neurons, which was not blocked by the low-Ca(2+)/high-Mg(2+) medium, indicating a direct postsynaptic effect of the amine. Selective histamine H1 receptor agonist 2-pyridylethylamine and H2 receptor agonist dimaprit, rather than VUF8430, a selective H4 receptor agonist, mimicked the excitation of histamine on SVN neurons. In addition, selective H1 receptor antagonist mepyramine and H2 receptor antagonist ranitidine, but not JNJ7777120, a selective H4 receptor antagonist, partially blocked the excitatory response of SVN neurons to histamine. Moreover, mepyramine together with ranitidine nearly totally blocked the histamine-induced excitation. Immunostainings further showed that histamine H1 and H2 instead of H4 receptors existed in the SVN. These results demonstrate that histamine excites the SVN neurons via postsynaptic histamine H1 and H2 receptors, and suggest that the central histaminergic innervation from the hypothalamus may actively bias the SVN neuronal activity and subsequently modulate the SVN-mediated vestibular functions and gaze control.
Assuntos
Potenciais de Ação/efeitos dos fármacos , Histamina/farmacologia , Neurônios/efeitos dos fármacos , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H2/metabolismo , Núcleos Vestibulares/efeitos dos fármacos , Animais , Dimaprit/farmacologia , Feminino , Agonistas dos Receptores Histamínicos/farmacologia , Masculino , Neurônios/metabolismo , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Núcleos Vestibulares/metabolismoRESUMO
Somatic-nonsomatic integration is critical for generation and execution of an appropriate and coordinated behavioral response to changes in internal and external environments. However, the underlying neural substrates and mechanisms are still enigmatic. Intriguingly, the central histaminergic and orexinergic systems originating from the hypothalamus, a high autonomic regulatory center, innervate almost the whole brain including various subcortical motor structures, particularly the cerebellum and vestibular nuclei. Here, we suggest that the hypothalamic histaminergic and orexinergic system bridging the nonsomatic center to somatic motor structures may actively modulate the cerebellar and vestibular nuclear neurons and subsequently participate in motor control and somatic-nonsomatic integration.
Assuntos
Cerebelo/fisiologia , Histamina/metabolismo , Hipotálamo/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Vestíbulo do Labirinto/fisiologia , Animais , Humanos , Vias Neurais/fisiologia , Vias Neurais/fisiopatologia , OrexinasRESUMO
BACKGROUND: Anxiety disorder is one of the most prevalent psychiatric disorders. Intriguingly, dysfunction of the central histaminergic system, which is recognized as a general regulator for whole-brain activity, may result in anxiety, suggesting an involvement of the central histaminergic signaling in the modulation of anxiety. However, the neural mechanisms involved have not been fully identified. METHODS: Here, we examined the effect of histaminergic signaling in the bed nucleus of the stria terminalis (BNST) on anxiety-like behaviors both in normal and acute restraint stressed male rats by using anterograde tracing, immunofluorescence, qPCR, neuropharmacology, molecular manipulation and behavioral tests. RESULTS: We found that histaminergic neurons in the hypothalamus send direct projections to the BNST, which forms a part of the circuitry involved in stress and anxiety. Infusion of histamine into the BNST produced anxiogenic effect. Moreover, histamine H1 and H2 receptors are expressed and distributed in the BNST neurons. Blockade of histamine H1 or H2 receptors in the BNST did not affect anxiety-like behaviors in normal rats, but ameliorated anxiogenic effect induced by acute restraint stress. Furthermore, knockdown of H1 or H2 receptors in the BNST induced anxiolytic effect in acute restraint stressed rats, which confirmed the pharmacological results. LIMITATIONS: A single dose of histamine receptor antagonist was used. CONCLUSIONS: Together, these findings demonstrate a novel mechanism for the central histaminergic system in the regulation of anxiety, and suggest that inhibition of histamine receptors may be a useful strategy for treating anxiety disorder.
Assuntos
Núcleos Septais , Ratos , Masculino , Animais , Núcleos Septais/fisiologia , Histamina/farmacologia , Receptores Histamínicos H2 , Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/tratamento farmacológicoRESUMO
BACKGROUND AND PURPOSE: Parvalbumin (PV)-positive neurons are a type of neuron in the lateral globus pallidus (LGP) which plays an important role in motor control. The present study investigated the effect of histamine on LGPPV neurons and motor behaviour. EXPERIMENTAL APPROACH: Histamine levels in LGP as well as its histaminergic innervation were determined through brain stimulation, microdialysis, anterograde tracing and immunostaining. Mechanisms of histamine action were detected by immunostaining, single-cell qPCR, whole-cell patch-clamp recording, optogenetic stimulation and CRISPR/Cas9 gene-editing techniques. The effect of histamine on motor behaviour was detected by animal behavioural tests. KEY RESULTS: A direct histaminergic innervation in LGP from the tuberomammillary nucleus (TMN) and a histamine-induced increase in the intrinsic excitability of LGPPV neurons were determined by pharmacological blockade or by genetic knockout of the histamine H1 receptor (H1 R)-coupled TWIK-related potassium channel-1 (TREK-1) and the small-conductance calcium-activated potassium channel (SK3), as well as by activation or overexpression of the histamine H2 receptor (H2 R)-coupled hyperpolarization-activated cyclic nucleotide-gated channel (HCN2). Histamine negatively regulated the STN â LGPGlu transmission in LGPPV neurons via the histamine H3 receptor (H3 R), whereas blockage or knockout of H3 R increased the intrinsic excitability of LGPPV neurons. CONCLUSIONS AND IMPLICATIONS: Our results indicated that the endogenous histaminergic innervation in the LGP can bidirectionally promote motor control by increasing the intrinsic excitability of LGPPV neurons through postsynaptic H1 R and H2 R, albeit its action was negatively regulated by the presynaptic H3 R, thereby suggesting possible role of histamine in motor deficits manifested in Parkinson's disease (PD).
Assuntos
Histamina , Parvalbuminas , Animais , Globo Pálido/metabolismo , Neurônios , Receptores Histamínicos , Receptores Histamínicos H2/genética , Receptores Histamínicos H2/metabolismoRESUMO
The dorsolateral striatum (DLS) is the critical neural substrate that plays a role in motor control and motor learning. Our past study revealed a direct histaminergic projection from the tuberomammillary nucleus (TMN) of the hypothalamus to the rat striatum. However, the afferent of histaminergic fibers in the mouse DLS, the effect of histamine on DLS neurons, and the underlying receptor and ionic mechanisms remain unclear. Here, we demonstrated a direct histaminergic innervation from the TMN in the mouse DLS, and histamine excited both the direct-pathway spiny projection neurons (d-SPNs) and the indirect-pathway spiny projection neurons (i-SPNs) of DLS via activation of postsynaptic H1R and H2R, albeit activation of presynaptic H3R suppressed neuronal activity by inhibiting glutamatergic synaptic transmission on d-SPNs and i-SPNs in DLS. Moreover, sodium-calcium exchanger 3 (NCX3), potassium-leak channels linked to H1R, and hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) coupled to H2R co-mediated the excitatory effect induced by histamine on d-SPNs and i-SPNs in DLS. These results demonstrated the pre- and postsynaptic receptors and their downstream multiple ionic mechanisms underlying the inhibitory and excitatory effects of histamine on d-SPNs and i-SPNs in DLS, suggesting a potential modulatory effect of the central histaminergic system on the DLS as well as its related motor control and motor learning.
Assuntos
Histamina , Neurônios , Animais , Camundongos , Corpo Estriado/metabolismo , Histamina/farmacologia , Neurônios/metabolismo , Canais de Potássio , Receptores Histamínicos H1/metabolismo , Transmissão SinápticaRESUMO
The central histaminergic nervous system, originating from the tuberomammillary nucleus of the hypothalamus, widely innervates almost the whole brain as well as the spinal cord. However, the effect of histamine on spinal motoneurons, the final common path for motor control, is still unknown. By using 8-14-day-old rat spinal slice preparations and intracellular recordings, the effect of histamine on motoneurons in lumbar spinal cord and the underlying mechanisms were studied. Bath application of histamine (30-300 µM) induced a membrane depolarization in the majority of recorded spinal motoneurons (78/90, 86%). Perfusing slices with tetrodotoxin or low-Ca(2+) /high-Mg(2+) medium did not block the histamine-induced excitation, indicating a direct postsynaptic action of histamine on motoneurons. Separate application of the selective histamine H(1) receptor antagonist mepyramine or the selective histamine H(2) receptor antagonist ranitidine partially suppressed the histamine-induced excitation, whereas a combination of ranitidine and mepyramine totally blocked the excitatory effect of histamine on motoneurons. On the other hand, both the selective histamine H(1) receptor agonist 2-pyridylethylamine and the selective histamine H(2) receptor agonist dimaprit mimicked the excitation of histamine on spinal motoneurons. These agonist-induced excitations were also blocked by mepyramine or ranitidine. Furthermore, histamine affected membrane input resistance and potentiated repetitive firing behavior of spinal motoneurons. These results demonstrate that histamine excites rat spinal motoneurons via the histamine H(1) and H(2) receptors and increases their excitability, suggesting that the hypothalamospinal histaminergic fibers may directly modulate final motor outputs and actively regulate ongoing motor execution andspinal motor reflexes.
Assuntos
Histamina/farmacologia , Neurônios Motores/efeitos dos fármacos , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H2/metabolismo , Medula Espinal/citologia , Potenciais de Ação/efeitos dos fármacos , Análise de Variância , Animais , Animais Recém-Nascidos , Biofísica , Bloqueadores dos Canais de Cálcio/farmacologia , Dimaprit/farmacologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Agonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores H2 da Histamina/farmacologia , Técnicas In Vitro , Técnicas de Patch-Clamp , Piridinas/farmacologia , Ranitidina/farmacologia , Ratos , Tetrodotoxina/farmacologiaRESUMO
Central orexinergic system deficiency results in cataplexy, a motor deficit characterized with a sudden loss of muscle tone, highlighting a direct modulatory role of orexin in motor control. However, the neural mechanisms underlying the regulation of orexin on motor function are still largely unknown. The subthalamic nucleus (STN), the only excitatory structure of the basal ganglia, holds a key position in the basal ganglia circuitry and motor control. Previous study has revealed a wide distribution of orexinergic fibers as well as orexin receptors in the basal ganglia including the STN. Therefore, in the present study, by using whole-cell patch clamp recording and immunostaining techniques, the direct effect of orexin on the STN neurons in brain slices, especially the underlying receptor and ionic mechanisms, were investigated. Our results show that orexin-A elicits an excitatory effect on STN neurons in rats. Tetrodotoxin (TTX) does not block the orexin-induced excitation on STN neurons, suggesting a direct postsynaptic action of the neuropeptide. The orexin-A-induced inward current on STN neurons is mediated by the activation of both OX1 and OX2 receptors. Immunofluorescence result shows that OX1 and OX2 receptors are co-expressed and co-localized in STN neurons. Furthermore, Na+-Ca2+ exchangers (NCXs) and inward rectifier K+ channels co-mediate the excitatory effect of orexin-A on STN neurons. These results demonstrate a dual receptor in conjunction with the downstream ionic mechanisms underlying the excitatory action of orexin on STN neurons, suggesting a potential modulation of the central orexinergic system on basal ganglia circuitry as well as its related motor control and motor diseases.
RESUMO
The subthalamic nucleus (STN) is an effective therapeutic target for deep brain stimulation (DBS) for Parkinson's disease (PD), and histamine levels are elevated in the basal ganglia in PD patients. However, the effect of endogenous histaminergic modulation on STN neuronal activities and the neuronal mechanism underlying STN-DBS are unknown. Here, we report that STN neuronal firing patterns are more crucial than firing rates for motor control. Histamine excited STN neurons, but paradoxically ameliorated parkinsonian motor deficits, which we attributed to regularizing firing patterns of STN neurons via the hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) channel coupled to the H2 receptor. Intriguingly, DBS increased histamine release in the STN and regularized STN neuronal firing patterns under parkinsonian conditions. HCN2 contributed to the DBS-induced regularization of neuronal firing patterns, suppression of excessive ß oscillations, and alleviation of motor deficits in PD. The results reveal an indispensable role for regularizing STN neuronal firing patterns in amelioration of parkinsonian motor dysfunction and a functional compensation for histamine in parkinsonian basal ganglia circuitry. The findings provide insights into mechanisms of STN-DBS as well as potential therapeutic targets and STN-DBS strategies for PD.
Assuntos
Ritmo beta , Estimulação Encefálica Profunda , Córtex Motor , Neurônios , Doença de Parkinson Secundária , Núcleo Subtalâmico , Animais , Histamina/metabolismo , Masculino , Córtex Motor/metabolismo , Córtex Motor/patologia , Córtex Motor/fisiopatologia , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , Doença de Parkinson Secundária/fisiopatologia , Doença de Parkinson Secundária/terapia , Ratos , Ratos Sprague-Dawley , Núcleo Subtalâmico/metabolismo , Núcleo Subtalâmico/patologia , Núcleo Subtalâmico/fisiopatologiaRESUMO
The central histaminergic nervous system, originating from the tuberomammillary nucleus (TMN) of the hypothalamus, widely innervates almost the whole brain, including the basal ganglia. Intriguingly, the histaminergic system is altered in parkinsonian patients. Yet, little is known about the effect and mechanisms of histamine on different types of neurons in the basal ganglia circuitry. Here, by using anterograde tracing, immunostaining, patch clamp recording, and single-cell qPCR techniques, we investigate the histaminergic afferents in the striatum, the major input structure of the basal ganglia, as well as the effect of histamine on the striatal GABAergic medium spiny projection neurons (MSNs). We report a direct histaminergic projection from the hypothalamic TMN to the striatum in rats. Furthermore, histamine exerts a strong postsynaptic excitatory effect on both dopamine D1 and D2 receptor-expressing MSNs. The concentration-response curves and the EC50 values for histamine on these two types of MSNs are similar. In addition, dopamine D1 and D2 receptor-expressing MSNs co-express histamine H1 and H2 receptor mRNAs. Both histamine H1 and H2 receptors are co-localized on dopamine D1 and D2 receptor-expressing MSNs and co-mediate the histamine-induced excitation on the two types of neurons. These results suggest that the histaminergic afferent inputs in the striatum may modulate both dopamine D1 and D2 receptor-expressing MSNs by activation of postsynaptic histamine H1 and H2 receptors and thus serve as an important extrastriatal modulator for biasing the direct and indirect pathways to actively regulate functions of the basal ganglia and participate in the pathogenesis and pathophysiology of basal ganglia diseases.
Assuntos
Histamina/farmacologia , Neostriado/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H2/metabolismo , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptores Histamínicos H1/genética , Receptores Histamínicos H2/genética , Sinapses/efeitos dos fármacos , Sinapses/metabolismoRESUMO
The cerebellum, a hindbrain motor center, also participates in regulating nonsomatic visceral activities such as feeding control. However, the underlying neural mechanism is largely unknown. Here, we investigate whether the cerebellar medial nucleus (MN), one of the final outputs of the cerebellum, could directly project to and modulate the feeding-related neurons in the ventromedial hypothalamic nucleus (VMN), which has been traditionally implicated in feeding behavior, energy balance, and body weight regulation. The retrograde tracing results show that both GABAergic and glutamatergic projection neurons in the cerebellar MN send direct projections to the VMN. Electrical stimulation of cerebellar MN elicits an inhibitory, excitatory or biphasic response of VMN neurons. Interestingly, the VMN neurons modulated by cerebellar MN afferents not only receive phasic and tonic inputs from the gastric vagal nerves, but also are sensitive to peripheral glycemia and ghrelin signals. Moreover, a summation of inputs from the cerebellar MN and gastric vagal afferents occurs on single glycemia/ghrelin-sensitive neurons in the VMN, and the immunostaining result show that the axons from the cerebellar MN and the projections from the nucleus tractus solitarius, which conveys the gastric vagal inputs to hypothalamus, converge on single VMN glycemia/ghrelin-sensitive neurons. These results demonstrate that the somatic information forwarded by the cerebellar MN, together with the feeding signals from periphery, converge onto single VMN neurons, suggesting that a somatic-visceral integration related to feeding may occur in the VMN and the cerebellum may actively participate in the feeding regulation through the direct cerebellar MN-VMN projections.
Assuntos
Núcleos Cerebelares/citologia , Núcleos Cerebelares/fisiologia , Comportamento Alimentar/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Núcleos Cerebelares/metabolismo , Estimulação Elétrica , Feminino , Neurônios GABAérgicos/citologia , Grelina/administração & dosagem , Glucose/administração & dosagem , Ácido Glutâmico/metabolismo , Masculino , Técnicas de Rastreamento Neuroanatômico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Vago/fisiologia , Núcleo Hipotalâmico Ventromedial/efeitos dos fármacos , Núcleo Hipotalâmico Ventromedial/metabolismoRESUMO
Cerebellar ataxia, characterized by motor incoordination, postural instability, and gait abnormality [1-3], greatly affects daily activities and quality of life. Although accumulating genetic and non-genetic etiological factors have been revealed [4-7], effective therapies for cerebellar ataxia are still lacking. Intriguingly, corticotropin-releasing factor (CRF), a peptide hormone and neurotransmitter [8, 9], is considered a putative neurotransmitter in the olivo-cerebellar system [10-14]. Notably, decreased levels of CRF in the inferior olive (IO), the sole origin of cerebellar climbing fibers, have been reported in patients with spinocerebellar degeneration or olivopontocerebellar atrophy [15, 16], yet little is known about the exact role of CRF in cerebellar motor coordination and ataxia. Here we report that deficiency of CRF in the olivo-cerebellar system induces ataxia-like motor abnormalities. CRFergic neurons in the IO project directly to the cerebellar nuclei, the ultimate integration and output node of the cerebellum, and CRF selectively excites glutamatergic projection neurons rather than GABAergic neurons in the cerebellar interpositus nucleus (IN) via two CRF receptors, CRFR1 and CRFR2, and their downstream inward rectifier K+ channel and/or hyperpolarization-activated cyclic nucleotide-gated (HCN) channel. Furthermore, CRF promotes cerebellar motor coordination and rescues ataxic motor deficits. The findings define a previously unknown role for CRF in the olivo-cerebellar system in the control of gait, posture, and motor coordination, and provide new insight into the etiology, pathophysiology, and treatment strategy of cerebellar ataxia.