RESUMO
BACKGROUND: Neonatal jaundice is a common condition occurring in 60%-80% of all healthy-term and late-preterm neonates. In the majority of cases, neonatal jaundice resolves spontaneously and causes no harm; however, in some neonates, signiï¬cant hyperbilirubinemia can develop and lead to kernicterus jaundice, a serious neurological disease. Phototherapy (PT) is the preferred treatment for jaundice; however, to be effective, PT devices need to have a broad light emission surface to generate no or little heat and to provide an optimal wavelength and light intensity (420-490 nm and ≥30 µW/cm²/nm, respectively). OBJECTIVE: This study aimed to investigate the feasibility, safety, and level of satisfaction of parents and health care teams with the BUBOlight device, an innovative alternative to conventional hospital PT, in which luminous textiles have been incorporated in a sleeping bag. METHODS: This interventional, exploratory, simple group, nonrandomized, single-center trial will be conducted at Lille Hospital. In total, 10-15 neonates and their parents will be included to obtain evaluable data from 10 parent-neonate pairs. Neonates weighing more than 2500 g at birth and born with ≥37 weeks of amenorrhea that required PT in accordance with the guidelines of the National Institute For Health and Clinical Excellence will receive one 4-hour session of illumination. Total serum bilirubin and transcutaneous bilirubin levels were obtained at the start and 2 hours after the end of PT. Cutaneous and rectal temperatures, heart rate, and oxygen saturation will be measured at the beginning and during PT. The number of subjects is therefore not calculated on the basis of statistical assumptions. We aim to obtain a minimum proportion of 90% (ie, 9 of 10) of the neonates included, who have been able to undergo 4-hour PT without unacceptable and unexpected toxicities. We will calculate the mean, median, quartiles, minimum and maximum values of the quantitative parameters, and the frequency of the qualitative parameters. The rate of patients with no unacceptable and unexpected toxicities (ie, the primary endpoint) will be calculated. RESULTS: The first patient is expected to be enrolled at the end of 2020, and clinical investigations are intended for up to June 2021. The final results of this study are expected to be available at the end of 2021. CONCLUSIONS: Our findings will provide insights into the safety and feasibility of a new PT device based on light-emitting fabrics for the treatment of newborn jaundice. This new system, if proven effective, will improve the humanization of neonatal care and help avoid mother-child separation. TRIAL REGISTRATION: ClinicalTrials.gov NCT04365998; https://clinicaltrials.gov/ct2/show/NCT04365998. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/24808.
RESUMO
Photodynamic therapy (PDT) appears to be a promising strategy in biomedical applications. However, the complexity of its parameters prevents wide acceptance. This work presents and characterizes a novel optical device based on knitted light-emitting fabrics and dedicated to in vitro PDT involving low irradiance over a long illumination period. Technical characterization of this device, called CELL-LEF, is performed. A cytotoxic study of 5-ALA-mediated PDT on human cancer cell lines is provided as a proof of concept. The target of delivering an irradiance of 1 mW/cm2 over 750 cm2 is achieved (mean: 0.99 mW/cm2; standard deviation: 0.13 mW/cm2). The device can maintain a stable temperature with the mean thermal distribution of 35.1 °C (min: 30.7 °C; max: 38.4 °C). In vitro outcomes show that 5-ALA PDT using CELL-LEF consistently and effectively induced a decrease in tumor cell viability: Almost all the HepG2 cells died after 80 min of illumination, while less than 60% of U87 cell viability remained. CELL-LEF is suitable for in vitro PDT involving low irradiance over a long illumination period.
RESUMO
BACKGROUND: Epithelial ovarian cancers (EOC) are usually diagnosed at an advanced stage and managed by complete macroscopic cytoreductive surgery (CRS) and systemic chemotherapy. Peritoneal recurrence occurs in 60% of patients and may be due to microscopic peritoneal metastases (mPM) which are neither eradicated by surgery nor controlled by systemic chemotherapy. The aim of this study was to assess and quantify the prevalence of residual mPM after complete macroscopic CRS in patients with advanced high-grade serous ovarian cancer (HGSOC). METHODS: A prospective study conducted between 1 June 2018 and 10 July 2019 in a single referent center accredited by the European Society of Gynecological Oncology for advanced EOC management. Consecutive patients presenting with advanced HGSOC and eligible for complete macroscopic CRS were included. Up to 13 peritoneal biopsies were taken from macroscopically healthy peritoneum at the end of CRS and examined for the presence of mPM. A mathematical model was designed to determine the probability of presenting at least one mPM after CRS. RESULTS: 26 patients were included and 26.9% presented mPM. There were no differences in characteristics between patients with or without identified mPM. After mathematical analysis, the probability that mPM remained after complete macroscopic CRS in patients with EOC was 98.14%. CONCLUSION: Microscopic PM is systematically present after complete macroscopic CRS for EOC and could be a relevant therapeutic target. Adjuvant locoregional strategies to conventional surgery may improve survival by achieving microscopic CRS.
RESUMO
Often discovered at an advanced stage, ovarian cancer progresses to peritoneal carcinoma, which corresponds to the invasion of the serosa by multiple tumor implants. The current treatment is based on the combination of chemotherapy and tumor cytoreduction surgery. Despite the progress and standardization of surgical techniques combined with effective chemotherapy, post-treatment recurrences affect more than 60% of women in remission. Photodynamic therapy (PDT) has been particularly indicated for the treatment of superficial lesions on large surfaces and appears to be a relevant candidate for the treatment of microscopic intraperitoneal lesions and non-visible lesions. However, the impact of this therapy on immune cells remains unclear. Hence, the objective of this study is to validate the efficacy of a new photosensitizer [pyropheophorbide a-polyethylene glycol-folic acid (PS)] on human ovarian cancer cells and to assess the impact of the secretome of PDT-treated cells on human peripheral blood mononuclear cells (PBMC). We show that PS, upon illumination, can induce cell death of different ovarian tumor cells. Furthermore, PDT using this new PS seems to favor activation of the immune response by inducing the secretion of effective cytokines and inhibiting the pro-inflammatory and immunosuppressive ones, as well as releasing extracellular vesicles (EVs) prone to activating immune cells. Finally, we show that PDT can activate CD4+ and CD8+ T cells, resulting in a potential immunostimulating process. The results of this pilot study therefore indicate that PS-PDT treatment may not only be effective in rapidly and directly destroying target tumor cells but also promote the activation of an effective immune response; notably, by EVs. These data thus open up good prospects for the treatment of micrometastases of intraperitoneal ovarian carcinosis which are currently inoperable.
RESUMO
To date, pancreatic adenocarcinoma (ADKP) is a devastating disease for which the incidence rate is close to the mortality rate. The survival rate has evolved only 2-5% in 45 years, highlighting the failure of current therapies. Otherwise, the use of photodynamic therapy (PDT), based on the use of an adapted photosensitizer (PS) has already proved its worth and has prompted a growing interest in the field of oncology. We have developed a new photosensitizer (PS-FOL/PS2), protected by a recently published patent (WO2019 016397-A1, 24 January 2019). This photosensitizer is associated with an addressing molecule (folic acid) targeting the folate receptor 1 (FOLR1) with a high affinity. Folate binds to FOLR1, in a specific way, expressed in 100% of ADKP or over-expressed in 30% of cases. The first objective of this study is to evaluate the effectiveness of this PS2-PDT in four ADKP cell lines: Capan-1, Capan-2, MiapaCa-2, and Panc-1. For this purpose, we first evaluated the gene and protein expression of FOLR1 on four ADKP cell lines. Subsequently, we evaluated PS2's efficacy in our cell lines and we assessed the impact of PDT on the secretome of cancer cells and its impact on the immune system. Finally, we evaluate the PDT efficacy on a humanized SCID mouse model of pancreatic cancer. In a very interesting way, we observed a significant increase in the proliferation of activated-human PBMC when cultured with conditioned media of ADKP cancer cells subjected to PDT. Furthermore, to evaluate in vivo the impact of this new PS, we analyzed the tumor growth in a humanized SCID mice model of pancreatic cancer. Four conditions were tested: Untreated, mice (nontreated), mice with PS (PS2), mice subjected to illumination (Light only), and mice subjected to illumination in the presence of PS (PDT). We noticed that the mice subjected to PDT presented a strong decrease in the growth of the tumor over time after illumination. Our investigations have not only suggested that PS2-PDT is an effective therapy in the treatment of PDAC but also that it activates the immune system and could be considered as a real adjuvant for anti-cancer vaccination. Thus, this new study provides new treatment options for patients in a therapeutic impasse and will provide a new arsenal in the fight against PDAC.
RESUMO
Surgical management of peritoneal metastases raises the problem of the theoretical spread of the entire peritoneal surface. Intraperitoneal photodynamic therapy (IntraPDT) has been limited by the lack of specificity of photosensitizers (PS) and difficulties to bring light into the abdominal cavity. Recent data in ovarian cancer may give development opportunities for IntraPDT. Intraperitoneal PDT could be an option but the level of evidence of research in this topic must increase. Our opinion is that the most important is to have a realistic idea of what we can objectively expect from PDT and the feasibility of its daily application. At the time of personalized medicine, it is mandatory to select population eligible for a targeted PS administration and who could benefit from the process. The design of a specific PS for each subtype of cancers seems essential to avoid side effects on healthy tissue. On the contrary, our progress on lighting solutions can be beneficial for all patients with an indication of IntraPDT regardless of the origin of PM. A common lighting system developed for all cancers eligible for IntraPDT could be adapted with light source of specific wavelength to activate dedicated PS.
Assuntos
Neoplasias Ovarianas , Neoplasias Peritoneais , Fotoquimioterapia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Peritoneais/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêuticoRESUMO
BACKGROUND: Extramammary Paget disease of the vulva (EMPV) is a rare skin disorder commonly seen in postmenopausal Caucasian females that appears clinically as red, eczematous, pruriginous, and sometimes painful lesions. Although most cases are noninvasive, EMPV may be associated with an underlying or distant adenocarcinoma. EMPV has a chronic and relapsing course. The reference treatment is based on local surgical excision with negative margins. However, disease frequently extends far from the visible lesion, and surgical margins are frequently positive. Topical photodynamic therapy (PDT) is an established treatment modality for various dermatooncologic conditions. For example, red light irradiation with the Aktilite CL 128 and Metvixia (Galderma SA) as a photosensitizing molecule is a conventional protocol approved and widely used in Europe for PDT treatment of actinic keratosis, but this treatment is not yet widely used for EMPV because it has never clearly been demonstrated and is very painful. OBJECTIVE: The aim of the study is to investigate the efficacy and safety relating to the medical device PAGETEX as a new painless PDT device using Metvixia in the treatment of vulvar Paget disease. The primary end point is the disease control rate at 3 months in 30% of the patients included, defined as stability, partial response, or total response, considering the extent of the lesion. Secondary end points are the disease control rate at 6 months, patient quality of life, level of pain experienced by the patient at each PDT session, severity of erythema, presence of protoporphyrin IX in Paget cells after each PDT session, and overall satisfaction level of the patient. METHODS: The trial is an interventional, exploratory, simple group, nonrandomized, and single center (Lille University Hospital) study. Twenty-four patients will be included according to Simon's optimal plan. Therapeutic procedure is based on a cycle of two PDT sessions with the PAGETEX medical device at 15-day intervals (Metvixia incubation during 30 minutes and 635 nm red light illumination with a low irradiance for 2 hours and 30 minutes for a total fluence of 12 J/cm²). At the assessment session, 3 months after inclusion, if the control of the disease is partial or null, the patient will complete another cycle of two PDT sessions. A final evaluation will be performed in all patients at 6 months. Analyses will be performed using SAS version 9.4 software (SAS Institute Inc). The characteristics of the patients at baseline will be described; qualitative variables will be described by numbers and percentages, and quantitative variables will be described either by the mean and standard deviation for Gaussian distribution or by the median and interquartile range (ie, 25th and 75th percentiles). The normality of the distributions will be tested by a Shapiro-Wilk test and checked graphically by histograms. RESULTS: First patient was included in September 2019 and clinical investigations are planned until August 2022. The final results of this study are expected to be available in January 2023. CONCLUSIONS: This clinical trial aims to evaluate the efficacy and safety of a new PDT protocol for the treatment of EMPV. The PAGETEX device could become the treatment of choice if it is effective, painless, and easy to implement and use in hospitals. TRIAL REGISTRATION: ClinicalTrials.gov NCT03713203; https://clinicaltrials.gov/ct2/show/NCT03713203. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/15026.