Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(8): e23621, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38651653

RESUMO

Denervated myofibers and senescent cells are hallmarks of skeletal muscle aging. However, sparse research has examined how resistance training affects these outcomes. We investigated the effects of unilateral leg extensor resistance training (2 days/week for 8 weeks) on denervated myofibers, senescent cells, and associated protein markers in apparently healthy middle-aged participants (MA, 55 ± 8 years old, 17 females, 9 males). We obtained dual-leg vastus lateralis (VL) muscle cross-sectional area (mCSA), VL biopsies, and strength assessments before and after training. Fiber cross-sectional area (fCSA), satellite cells (Pax7+), denervated myofibers (NCAM+), senescent cells (p16+ or p21+), proteins associated with denervation and senescence, and senescence-associated secretory phenotype (SASP) proteins were analyzed from biopsy specimens. Leg extensor peak torque increased after training (p < .001), while VL mCSA trended upward (interaction p = .082). No significant changes were observed for Type I/II fCSAs, NCAM+ myofibers, or senescent (p16+ or p21+) cells, albeit satellite cells increased after training (p = .037). While >90% satellite cells were not p16+ or p21+, most p16+ and p21+ cells were Pax7+ (>90% on average). Training altered 13 out of 46 proteins related to muscle-nerve communication (all upregulated, p < .05) and 10 out of 19 proteins related to cellular senescence (9 upregulated, p < .05). Only 1 out of 17 SASP protein increased with training (IGFBP-3, p = .031). In conclusion, resistance training upregulates proteins associated with muscle-nerve communication in MA participants but does not alter NCAM+ myofibers. Moreover, while training increased senescence-related proteins, this coincided with an increase in satellite cells but not alterations in senescent cell content or SASP proteins. These latter findings suggest shorter term resistance training is an unlikely inducer of cellular senescence in apparently healthy middle-aged participants. However, similar study designs are needed in older and diseased populations before definitive conclusions can be drawn.


Assuntos
Senescência Celular , Treinamento Resistido , Humanos , Treinamento Resistido/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Senescência Celular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Biomarcadores/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fator de Transcrição PAX7/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Adulto , Músculo Quadríceps/metabolismo , Músculo Quadríceps/inervação
2.
J Am Coll Nutr ; 37(2): 111-120, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29111889

RESUMO

BACKGROUND: Very few weight and fat loss supplements undergo finished-product research to examine efficacy. The purpose of this study was to determine the effects of an 8-week diet and exercise program on body composition, hip and waist girth, and adipokines and evaluate whether a dietary supplement containing raspberry ketone, capsaicin, caffeine, garlic, and Citrus aurantium enhanced outcomes. METHODS: Overweight men and women completed this randomized, placebo-controlled, double-blind study. Participants consumed 4 capsules/d of supplement (EXP; n = 18) or placebo (PLA; n = 18). Participants underwent 8 weeks of daily supplementation, calorie restriction (500 kcal < RMR [resting metabolic rate] × 1.2), and supervised progressive exercise training 3 times a week. Body composition, girth, and adipokines were assessed at baseline and postintervention (T1 and T2). RESULTS: Significant decreases in weight (-2.6 ± 0.57 kg, p < 0.001), fat mass (-1.8 ± 0.20 kg; p < 0.001), and percentage body fat (-3.7% ± 0.29%, p < 0.001) and a significant increase in lean body mass (LBM; 1.5 ± 0.26 kg; p < 0.001) were seen from T1 to T2 in both groups. For men, only those in the EXP group increased LBM from T1 to T2 (1.3 ± 0.38 kg; p < 0.05). Hip girth was also reduced, with the women in the EXP group (-10.7 ± 2.15 cm, p < 0.001) having a greater reduction. There was a time by group interaction, with significant decreases in leptin (p < 0.001) and significant increases in adiponectin (p < 0.05) in the EXP group. CONCLUSIONS: Significant improvements in adipokines and leptin support the utility of exercise, diet, and fat loss for impacting inflammatory biomarkers. The improvement in adiponectin with EXP may suggest a unique health mechanism.


Assuntos
Adipocinas/sangue , Composição Corporal , Dieta , Suplementos Nutricionais , Exercício Físico , Sobrepeso/terapia , Adulto , Cafeína/administração & dosagem , Restrição Calórica , Capsaicina/administração & dosagem , Citrus , Suplementos Nutricionais/análise , Método Duplo-Cego , Feminino , Alho , Quadril/anatomia & histologia , Humanos , Cetonas/administração & dosagem , Leptina/sangue , Masculino , Pessoa de Meia-Idade , Placebos , Rubus/química , Fatores Sexuais , Circunferência da Cintura , Redução de Peso
3.
J Int Soc Sports Nutr ; 21(1): 2323919, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38466174

RESUMO

Caffeine is a popular ergogenic aid that has a plethora of evidence highlighting its positive effects. A Google Scholar search using the keywords "caffeine" and "exercise" yields over 200,000 results, emphasizing the extensive research on this topic. However, despite the vast amount of available data, it is intriguing that uncertainties persist regarding the effectiveness and safety of caffeine. These include but are not limited to: 1. Does caffeine dehydrate you at rest? 2. Does caffeine dehydrate you during exercise? 3. Does caffeine promote the loss of body fat? 4. Does habitual caffeine consumption influence the performance response to acute caffeine supplementation? 5. Does caffeine affect upper vs. lower body performance/strength differently? 6. Is there a relationship between caffeine and depression? 7. Can too much caffeine kill you? 8. Are there sex differences regarding caffeine's effects? 9. Does caffeine work for everyone? 10. Does caffeine cause heart problems? 11. Does caffeine promote the loss of bone mineral? 12. Should pregnant women avoid caffeine? 13. Is caffeine addictive? 14. Does waiting 1.5-2.0 hours after waking to consume caffeine help you avoid the afternoon "crash?" To answer these questions, we performed an evidence-based scientific evaluation of the literature regarding caffeine supplementation.


Assuntos
Cafeína , Substâncias para Melhoria do Desempenho , Masculino , Gravidez , Humanos , Feminino , Cafeína/farmacologia , Tecido Adiposo , Exercício Físico , Substâncias para Melhoria do Desempenho/farmacologia , Suplementos Nutricionais
4.
Aging (Albany NY) ; 16(8): 6631-6651, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643460

RESUMO

The skeletal muscle proteome alterations to aging and resistance training have been reported in prior studies. However, conventional proteomics in skeletal muscle typically yields wide protein abundance ranges that mask the detection of lowly expressed proteins. Thus, we adopted a novel deep proteomics approach whereby myofibril (MyoF) and non-MyoF fractions were separately subjected to protein corona nanoparticle complex formation prior to digestion and Liquid Chromatography Mass Spectrometry (LC-MS). Specifically, we investigated MyoF and non-MyoF proteomic profiles of the vastus lateralis muscle of younger (Y, 22±2 years old; n=5) and middle-aged participants (MA, 56±8 years old; n=6). Additionally, MA muscle was analyzed following eight weeks of resistance training (RT, 2d/week). Across all participants, the number of non-MyoF proteins detected averaged to be 5,645±266 (range: 4,888-5,987) and the number of MyoF proteins detected averaged to be 2,611±326 (range: 1,944-3,101). Differences in the non-MyoF (8.4%) and MyoF (2.5%) proteomes were evident between age cohorts, and most differentially expressed non-MyoF proteins (447/543) were more enriched in MA versus Y. Biological processes in the non-MyoF fraction were predicted to be operative in MA versus Y including increased cellular stress, mRNA splicing, translation elongation, and ubiquitin-mediated proteolysis. RT in MA participants only altered ~0.3% of MyoF and ~1.0% of non-MyoF proteomes. In summary, aging and RT predominantly affect non-contractile proteins in skeletal muscle. Additionally, marginal proteome adaptations with RT suggest more rigorous training may stimulate more robust effects or that RT, regardless of age, subtly alters basal state skeletal muscle protein abundances.


Assuntos
Envelhecimento , Músculo Esquelético , Proteômica , Treinamento Resistido , Humanos , Envelhecimento/metabolismo , Envelhecimento/genética , Pessoa de Meia-Idade , Proteômica/métodos , Masculino , Adulto Jovem , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Adulto , Feminino
5.
Nutrients ; 15(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38140277

RESUMO

The aim of this study was to assess the effects of guayusa extract and Nordic Lion's Mane (LM) on cognition. Using a randomized, double-blind, placebo-controlled, crossover design, we examined the effects of a single dose of 650 mg guayusa extract (AMT: AmaTea® Max) vs. 1 g Nordic-grown Lion's Mane (LM) vs. placebo (PL). Participants attended three testing visits consisting of neuropsychological tests (Go/No-go, N-Back, and Serial 7 s tasks) assessing performance, subjective assessments of cognitive perception, and vital signs. Each assessment was measured at baseline (pre-ingestion) and 1 and 2 h post ingestion. AMT significantly (p ≤ 0.05) improved the number of attempts during Serial 7s, total score, number of correct responses, total number of responses, and reaction time during N-Back and improved Go stimulus reaction time, but it reduced the percentage of correct responses in the No-go stimulus response during Go/No-go. LM significantly (p ≤ 0.05) improved the number of attempts during Serial 7s and reaction time during N-Back and improved Go stimulus reaction time in Go/No-go. AMT improved mental clarity, focus, concentration, mood, and productivity at 1 and 2 h (p < 0.05); the ability to tolerate stress at 1 h; and had greater ratings than LM and PL for mental clarity, focus, concentration, and productivity. PL improved focus and concentration at 1 h from baseline (p ≤ 0.05). AMT and LM improved subjective ratings of "happiness compared to peers" and "getting the most out of everything" (p < 0.05); however, this occurred earlier in LM (i.e., 1 h post ingestion). AMT uniquely elevated blood pressure from baseline. AMT significantly improved cognitive performance and self-perceived cognitive indices of affect over a 2 h period and perceptions of happiness 2 h post ingestion. In comparison, LM helped improve working memory, complex attention, and reaction time 2 h post ingestion and perceptions of happiness over a 2 h period.


Assuntos
Cognição , Ilex guayusa , Extratos Vegetais , Humanos , Cognição/efeitos dos fármacos , Extratos Vegetais/farmacologia , Chá
6.
J Int Soc Sports Nutr ; 20(1): 2237952, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37498180

RESUMO

Based on review and critical analysis of the literature regarding the contents and physiological effects of coffee related to physical and cognitive performance conducted by experts in the field and selected members of the International Society of Sports Nutrition (ISSN), the following conclusions represent the official Position of the Society:(1) Coffee is a complex matrix of hundreds of compounds. These are consumed with broad variability based upon serving size, bean type (e.g. common Arabica vs. Robusta), and brew method (water temperature, roasting method, grind size, time, and equipment).(2) Coffee's constituents, including but not limited to caffeine, have neuromuscular, antioxidant, endocrine, cognitive, and metabolic (e.g. glucose disposal and vasodilation) effects that impact exercise performance and recovery.(3) Coffee's physiologic effects are influenced by dose, timing, habituation to a small degree (to coffee or caffeine), nutrigenetics, and potentially by gut microbiota differences, sex, and training status.(4) Coffee and/or its components improve performance across a temporal range of activities from reaction time, through brief power exercises, and into the aerobic time frame in most but not all studies. These broad and varied effects have been demonstrated in men (mostly) and in women, with effects that can differ from caffeine ingestion, per se. More research is needed.(5) Optimal dosing and timing are approximately two to four cups (approximately 473-946 ml or 16-32 oz.) of typical hot-brewed or reconstituted instant coffee (depending on individual sensitivity and body size), providing a caffeine equivalent of 3-6 mg/kg (among other components such as chlorogenic acids at approximately 100-400 mg per cup) 60 min prior to exercise.(6) Coffee has a history of controversy regarding side effects but is generally considered safe and beneficial for healthy, exercising individuals in the dose range above.(7) Coffee can serve as a vehicle for other dietary supplements, and it can interact with nutrients in other foods.(8) A dearth of literature exists examining coffee-specific ergogenic and recovery effects, as well as variability in the operational definition of "coffee," making conclusions more challenging than when examining caffeine in its many other forms of delivery (capsules, energy drinks, "pre-workout" powders, gum, etc.).


Assuntos
Desempenho Atlético , Café , Masculino , Feminino , Humanos , Cafeína/farmacologia , Desempenho Atlético/fisiologia , Ácido Clorogênico/análise , Exercício Físico
7.
bioRxiv ; 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333259

RESUMO

We examined the myofibrillar (MyoF) and non-myofibrillar (non-MyoF) proteomic profiles of the vastus lateralis (VL) muscle of younger (Y, 22±2 years old; n=5) and middle-aged participants (MA, 56±8 years old; n=6), and MA following eight weeks of knee extensor resistance training (RT, 2d/week). Shotgun/bottom-up proteomics in skeletal muscle typically yields wide protein abundance ranges that mask lowly expressed proteins. Thus, we adopted a novel approach whereby the MyoF and non-MyoF fractions were separately subjected to protein corona nanoparticle complex formation prior to digestion and Liquid Chromatography Mass Spectrometry (LC-MS) analysis. A total of 10,866 proteins (4,421 MyoF and 6,445 non-MyoF) were identified. Across all participants, the number of non-MyoF proteins detected averaged to be 5,645±266 (range: 4,888-5,987) and the number of MyoF proteins detected averaged to be 2,611±326 (range: 1,944-3,101). Differences in the non-MyoF (8.4%) and MyoF (2.5%) proteome were evident between age cohorts. Further, most of these age-related non-MyoF proteins (447/543) were more enriched in MA versus Y. Several biological processes in the non-MyoF fraction were predicted to be operative in MA versus Y including (but not limited to) increased cellular stress, mRNA splicing, translation elongation, and ubiquitin-mediated proteolysis. Non-MyoF proteins associated with splicing and proteostasis were further interrogated, and in agreement with bioinformatics, alternative protein variants, spliceosome-associated proteins (snRNPs), and proteolysis-related targets were more abundant in MA versus Y. RT in MA non-significantly increased VL muscle cross-sectional area (+6.5%, p=0.066) and significantly increased knee extensor strength (+8.7%, p=0.048). However, RT modestly altered the MyoF (~0.3%, 11 upregulated and two downregulated proteins) and non-MyoF proteomes (~1.0%, 56 upregulated and eight downregulated proteins, p<0.01). Further, RT did not affect predicted biological processes in either fraction. Although participant numbers were limited, these preliminary results using a novel deep proteomic approach in skeletal muscle suggest that aging and RT predominantly affects protein abundances in the non-contractile protein pool. However, the marginal proteome adaptations occurring with RT suggest either: a) this may be an aging-associated phenomenon, b) more rigorous RT may stimulate more robust effects, or c) RT, regardless of age, subtly affects skeletal muscle protein abundances in the basal state.

8.
Cells ; 12(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36980239

RESUMO

Although transcriptome profiling has been used in several resistance training studies, the associated analytical approaches seldom provide in-depth information on individual genes linked to skeletal muscle hypertrophy. Therefore, a secondary analysis was performed herein on a muscle transcriptomic dataset we previously published involving trained college-aged men (n = 11) performing two resistance exercise bouts in a randomized and crossover fashion. The lower-load bout (30 Fail) consisted of 8 sets of lower body exercises to volitional fatigue using 30% one-repetition maximum (1 RM) loads, whereas the higher-load bout (80 Fail) consisted of the same exercises using 80% 1 RM loads. Vastus lateralis muscle biopsies were collected prior to (PRE), 3 h, and 6 h after each exercise bout, and 58 genes associated with skeletal muscle hypertrophy were manually interrogated from our prior microarray data. Select targets were further interrogated for associated protein expression and phosphorylation induced-signaling events. Although none of the 58 gene targets demonstrated significant bout x time interactions, ~57% (32 genes) showed a significant main effect of time from PRE to 3 h (15↑ and 17↓, p < 0.01), and ~26% (17 genes) showed a significant main effect of time from PRE to 6 h (8↑ and 9↓, p < 0.01). Notably, genes associated with the myostatin (9 genes) and mammalian target of rapamycin complex 1 (mTORC1) (9 genes) signaling pathways were most represented. Compared to mTORC1 signaling mRNAs, more MSTN signaling-related mRNAs (7 of 9) were altered post-exercise, regardless of the bout, and RHEB was the only mTORC1-associated mRNA that was upregulated following exercise. Phosphorylated (phospho-) p70S6K (Thr389) (p = 0.001; PRE to 3 h) and follistatin protein levels (p = 0.021; PRE to 6 h) increased post-exercise, regardless of the bout, whereas phospho-AKT (Thr389), phospho-mTOR (Ser2448), and myostatin protein levels remained unaltered. These data continue to suggest that performing resistance exercise to volitional fatigue, regardless of load selection, elicits similar transient mRNA and signaling responses in skeletal muscle. Moreover, these data provide further evidence that the transcriptional regulation of myostatin signaling is an involved mechanism in response to resistance exercise.


Assuntos
Músculo Esquelético , Treinamento Resistido , Humanos , Masculino , Adulto Jovem , Expressão Gênica , Hipertrofia/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Miostatina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Cells ; 12(2)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36672198

RESUMO

We sought to determine the skeletal muscle genome-wide DNA methylation and mRNA responses to one bout of lower load (LL) versus higher load (HL) resistance exercise. Trained college-aged males (n = 11, 23 ± 4 years old, 4 ± 3 years self-reported training) performed LL or HL bouts to failure separated by one week. The HL bout (i.e., 80 Fail) consisted of four sets of back squats and four sets of leg extensions to failure using 80% of participants estimated one-repetition maximum (i.e., est. 1-RM). The LL bout (i.e., 30 Fail) implemented the same paradigm with 30% of est. 1-RM. Vastus lateralis muscle biopsies were collected before, 3 h, and 6 h after each bout. Muscle DNA and RNA were batch-isolated and analyzed using the 850k Illumina MethylationEPIC array and Clariom S mRNA microarray, respectively. Performed repetitions were significantly greater during the 30 Fail versus 80 Fail (p < 0.001), although total training volume (sets × reps × load) was not significantly different between bouts (p = 0.571). Regardless of bout, more CpG site methylation changes were observed at 3 h versus 6 h post exercise (239,951 versus 12,419, respectively; p < 0.01), and nuclear global ten-eleven translocation (TET) activity, but not global DNA methyltransferase activity, increased 3 h and 6 h following exercise regardless of bout. The percentage of genes significantly altered at the mRNA level that demonstrated opposite DNA methylation patterns was greater 3 h versus 6 h following exercise (~75% versus ~15%, respectively). Moreover, high percentages of genes that were up- or downregulated 6 h following exercise also demonstrated significantly inversed DNA methylation patterns across one or more CpG sites 3 h following exercise (65% and 82%, respectively). While 30 Fail decreased DNA methylation across various promoter regions versus 80 Fail, transcriptome-wide mRNA and bioinformatics indicated that gene expression signatures were largely similar between bouts. Bioinformatics overlay of DNA methylation and mRNA expression data indicated that genes related to "Focal adhesion," "MAPK signaling," and "PI3K-Akt signaling" were significantly affected at the 3 h and 6 h time points, and again this was regardless of bout. In conclusion, extensive molecular profiling suggests that post-exercise alterations in the skeletal muscle DNA methylome and mRNA transcriptome elicited by LL and HL training bouts to failure are largely similar, and this could be related to equal volumes performed between bouts.


Assuntos
Metilação de DNA , Treinamento Resistido , Masculino , Humanos , Adulto Jovem , Adulto , Metilação de DNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Músculo Esquelético/metabolismo , DNA/metabolismo
10.
J Int Soc Sports Nutr ; 19(1): 267-315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813846

RESUMO

This position stand aims to provide an evidence-based summary of the energy and nutritional demands of tactical athletes to promote optimal health and performance while keeping in mind the unique challenges faced due to work schedules, job demands, and austere environments. After a critical analysis of the literature, the following nutritional guidelines represent the position of the International Society of Sports Nutrition (ISSN). General Recommendations: Nutritional considerations should include the provision and timing of adequate calories, macronutrients, and fluid to meet daily needs as well as strategic nutritional supplementation to improve physical, cognitive, and occupational performance outcomes; reduce risk of injury, obesity, and cardiometabolic disease; reduce the potential for a fatal mistake; and promote occupational readiness. Military Recommendations: Energy demands should be met by utilizing the Military Dietary Reference Intakes (MDRIs) established and codified in Army Regulation 40-25. Although research is somewhat limited, military personnel may also benefit from caffeine, creatine monohydrate, essential amino acids, protein, omega-3-fatty acids, beta-alanine, and L-tyrosine supplementation, especially during high-stress conditions. First Responder Recommendations: Specific energy needs are unknown and may vary depending on occupation-specific tasks. It is likely the general caloric intake and macronutrient guidelines for recreational athletes or the Acceptable Macronutrient Distribution Ranges for the general healthy adult population may benefit first responders. Strategies such as implementing wellness policies, setting up supportive food environments, encouraging healthier food systems, and using community resources to offer evidence-based nutrition classes are inexpensive and potentially meaningful ways to improve physical activity and diet habits. The following provides a more detailed overview of the literature and recommendations for these populations.


Assuntos
Ciências da Nutrição e do Esporte , Atletas , Dieta , Ingestão de Energia , Exercício Físico/fisiologia , Humanos , Necessidades Nutricionais
11.
J Int Soc Sports Nutr ; 18(1): 13, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33557850

RESUMO

Supplementing with creatine is very popular amongst athletes and exercising individuals for improving muscle mass, performance and recovery. Accumulating evidence also suggests that creatine supplementation produces a variety of beneficial effects in older and patient populations. Furthermore, evidence-based research shows that creatine supplementation is relatively well tolerated, especially at recommended dosages (i.e. 3-5 g/day or 0.1 g/kg of body mass/day). Although there are over 500 peer-refereed publications involving creatine supplementation, it is somewhat surprising that questions regarding the efficacy and safety of creatine still remain. These include, but are not limited to: 1. Does creatine lead to water retention? 2. Is creatine an anabolic steroid? 3. Does creatine cause kidney damage/renal dysfunction? 4. Does creatine cause hair loss / baldness? 5. Does creatine lead to dehydration and muscle cramping? 6. Is creatine harmful for children and adolescents? 7. Does creatine increase fat mass? 8. Is a creatine 'loading-phase' required? 9. Is creatine beneficial for older adults? 10. Is creatine only useful for resistance / power type activities? 11. Is creatine only effective for males? 12. Are other forms of creatine similar or superior to monohydrate and is creatine stable in solutions/beverages? To answer these questions, an internationally renowned team of research experts was formed to perform an evidence-based scientific evaluation of the literature regarding creatine supplementation.


Assuntos
Creatina/efeitos adversos , Suplementos Nutricionais/efeitos adversos , Adiposidade/efeitos dos fármacos , Adolescente , Adulto , Alopecia/induzido quimicamente , Água Corporal/efeitos dos fármacos , Criança , Creatina/administração & dosagem , Creatina/química , Creatina/metabolismo , Desidratação/induzido quimicamente , Feminino , Humanos , Rim/efeitos dos fármacos , Nefropatias/induzido quimicamente , Masculino , Cãibra Muscular/induzido quimicamente , Músculo Esquelético/efeitos dos fármacos , Fatores Sexuais , Fenômenos Fisiológicos da Nutrição Esportiva , Testosterona/metabolismo , Congêneres da Testosterona/farmacologia
12.
J Int Soc Sports Nutr ; 18(1): 61, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503527

RESUMO

Based on a comprehensive review and critical analysis of the literature regarding the effects of sodium bicarbonate supplementation on exercise performance, conducted by experts in the field and selected members of the International Society of Sports Nutrition (ISSN), the following conclusions represent the official Position of the Society: 1. Supplementation with sodium bicarbonate (doses from 0.2 to 0.5 g/kg) improves performance in muscular endurance activities, various combat sports, including boxing, judo, karate, taekwondo, and wrestling, and in high-intensity cycling, running, swimming, and rowing. The ergogenic effects of sodium bicarbonate are mostly established for exercise tasks of high-intensity that last between 30 s and 12 min. 2. Sodium bicarbonate improves performance in single- and multiple-bout exercise. 3. Sodium bicarbonate improves exercise performance in both men and women. 4. For single-dose supplementation protocols, 0.2 g/kg of sodium bicarbonate seems to be the minimum dose required to experience improvements in exercise performance. The optimal dose of sodium bicarbonate dose for ergogenic effects seems to be 0.3 g/kg. Higher doses (e.g., 0.4 or 0.5 g/kg) may not be required in single-dose supplementation protocols, because they do not provide additional benefits (compared with 0.3 g/kg) and are associated with a higher incidence and severity of adverse side-effects. 5. For single-dose supplementation protocols, the recommended timing of sodium bicarbonate ingestion is between 60 and 180 min before exercise or competition. 6. Multiple-day protocols of sodium bicarbonate supplementation can be effective in improving exercise performance. The duration of these protocols is generally between 3 and 7 days before the exercise test, and a total sodium bicarbonate dose of 0.4 or 0.5 g/kg per day produces ergogenic effects. The total daily dose is commonly divided into smaller doses, ingested at multiple points throughout the day (e.g., 0.1 to 0.2 g/kg of sodium bicarbonate consumed at breakfast, lunch, and dinner). The benefit of multiple-day protocols is that they could help reduce the risk of sodium bicarbonate-induced side-effects on the day of competition. 7. Long-term use of sodium bicarbonate (e.g., before every exercise training session) may enhance training adaptations, such as increased time to fatigue and power output. 8. The most common side-effects of sodium bicarbonate supplementation are bloating, nausea, vomiting, and abdominal pain. The incidence and severity of side-effects vary between and within individuals, but it is generally low. Nonetheless, these side-effects following sodium bicarbonate supplementation may negatively impact exercise performance. Ingesting sodium bicarbonate (i) in smaller doses (e.g., 0.2 g/kg or 0.3 g/kg), (ii) around 180 min before exercise or adjusting the timing according to individual responses to side-effects, (iii) alongside a high-carbohydrate meal, and (iv) in enteric-coated capsules are possible strategies to minimize the likelihood and severity of these side-effects. 9. Combining sodium bicarbonate with creatine or beta-alanine may produce additive effects on exercise performance. It is unclear whether combining sodium bicarbonate with caffeine or nitrates produces additive benefits. 10. Sodium bicarbonate improves exercise performance primarily due to a range of its physiological effects. Still, a portion of the ergogenic effect of sodium bicarbonate seems to be placebo-driven.


Assuntos
Desempenho Atlético , Exercício Físico , Substâncias para Melhoria do Desempenho , Bicarbonato de Sódio , Ciências da Nutrição e do Esporte , Desempenho Atlético/fisiologia , Feminino , Humanos , Masculino , Substâncias para Melhoria do Desempenho/farmacologia , Bicarbonato de Sódio/farmacologia
13.
J Diet Suppl ; 17(5): 561-586, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32456572

RESUMO

We determined the effects of a commercially available, GRAS (Generally Recognized As Safe) by independent conclusion, CBD-containing hemp oil extract on stress resilience, perceived recovery, mood, affect, body composition, and clinical safety markers in healthy human subjects.Methods: Using a randomized, placebo-controlled, double-blind design, 65 overweight, but otherwise healthy men and women (35.2 ± 11.4 years, 28.5 ± 3.3 kg/m2) ingested either Hemp Oil Extract [Hemp, 60 mg/d PlusCBDTM Extra Strength Hemp Extract Oil (15 mg hemp-derived CBD)] or a placebo (PLA) every day for six weeks while continuing to follow their normal diet and physical activity patterns. Outcome variables included changes in stress resilience, a 14-item panel of various psychometric parameters, heart-rate variability, plasma chromogranin A, body composition, and general markers of health. Data were analyzed using mixed factorial ANOVA, t-tests with 95% confidence intervals, and effect sizes (ES).Results: HDL cholesterol significantly improved in the Hemp group (p = 0.004; ES = 0.75). No other statistically significant group x time interaction effects were observed. Statistical tendencies for between-group differences were found for 'I Get Pleasure From Life' (p = 0.06, ES = 0.48) and 'Ability to Cope with Stress' (p = 0.07, ES = 0.46). Sleep quality (Hemp, p = 0.005, ES = 0.54) and sleep quantity (Hemp, p = 0.01, ES = 0.58) exhibited significant within-group changes. All values for hepato-renal function, cardiovascular health, fasting blood lipids, and whole blood cell counts remained within normal clinical limits with no between-group differences over time being identified.Conclusions: Hemp supplementation improved HDL cholesterol, tended to support psychometric measures of perceived sleep, stress response, and perceived life pleasure and was well tolerated with no clinically relevant safety concerns. Registered at clinicaltrials.gov: NCT04294706.


Assuntos
Cannabis , Suplementos Nutricionais , Sobrepeso/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Resiliência Psicológica/efeitos dos fármacos , Adaptação Psicológica/efeitos dos fármacos , Adulto , Análise de Variância , Biomarcadores/sangue , Composição Corporal/efeitos dos fármacos , HDL-Colesterol/sangue , Cromogranina A/sangue , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Sobrepeso/sangue , Sobrepeso/psicologia , Psicometria , Sono/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
14.
Aging (Albany NY) ; 12(10): 9447-9460, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32369778

RESUMO

We examined if resistance training affected muscle NAD+ and NADH concentrations as well as nicotinamide phosphoribosyltransferase (NAMPT) protein levels and sirtuin (SIRT) activity markers in middle-aged, untrained (MA) individuals. MA participants (59±4 years old; n=16) completed 10 weeks of full-body resistance training (2 d/wk). Body composition, knee extensor strength, and vastus lateralis muscle biopsies were obtained prior to training (Pre) and 72 hours following the last training bout (Post). Data from trained college-aged men (22±3 years old, training age: 6±2 years old; n=15) were also obtained for comparative purposes. Muscle NAD+ (+127%, p<0.001), NADH (+99%, p=0.002), global SIRT activity (+13%, p=0.036), and NAMPT protein (+15%, p=0.014) increased from Pre to Post in MA participants. Additionally, Pre muscle NAD+ and NADH in MA participants were lower than college-aged participants (p<0.05), whereas Post values were similar between cohorts (p>0.10). Interestingly, muscle citrate synthase activity levels (i.e., mitochondrial density) increased in MA participants from Pre to Post (+183%, p<0.001), and this increase was significantly associated with increases in muscle NAD+ (r2=0.592, p=0.001). In summary, muscle NAD+, NADH, and global SIRT activity are positively affected by resistance training in middle-aged, untrained individuals. Whether these adaptations facilitated mitochondrial biogenesis remains to be determined.


Assuntos
Citocinas/metabolismo , Músculo Esquelético , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Sobrepeso , Treinamento Resistido , Envelhecimento/metabolismo , Citocinas/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/química , Músculo Esquelético/metabolismo , NAD/análise , Nicotinamida Fosforribosiltransferase/análise , Sobrepeso/metabolismo , Sobrepeso/terapia
15.
J Am Coll Nutr ; 28(1): 16-21, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19571155

RESUMO

OBJECTIVE: To determine the effects of a dried aqueous extract of cinnamon on antioxidant status of people with impaired fasting glucose that are overweight or obese. METHODS: Twenty-two subjects, with impaired fasting blood glucose with BMI ranging from 25 to 45, were enrolled in a double-blind placebo-controlled trial. Subjects were given capsules containing either a placebo or 250 mg of an aqueous extract of cinnamon (Cinnulin PF) two times per day for 12 weeks. Plasma malondialdehyde (MDA) concentrations were assessed using high performance liquid chromatography and plasma antioxidant status was evaluated using ferric reducing antioxidant power (FRAP) assay. Erythrocyte Cu-Zn superoxide (Cu-Zn SOD) activity was measured after hemoglobin precipitation by monitoring the auto-oxidation of pyrogallol and erythrocyte glutathione peroxidase (GPx) activity by established methods. RESULTS: FRAP and plasma thiol (SH) groups increased, while plasma MDA levels decreased in subjects receiving the cinnamon extract. Effects were larger after 12 than 6 weeks. There was also a positive correlation (r = 0.74; p = 0.014) between MDA and plasma glucose. CONCLUSION: This study supports the hypothesis that the inclusion of water soluble cinnamon compounds in the diet could reduce risk factors associated with diabetes and cardiovascular disease.


Assuntos
Antioxidantes/uso terapêutico , Glicemia/metabolismo , Cinnamomum zeylanicum , Hipoglicemiantes/uso terapêutico , Sobrepeso/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Adulto , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Índice de Massa Corporal , Método Duplo-Cego , Eritrócitos/efeitos dos fármacos , Glutationa Peroxidase/sangue , Humanos , Hiperglicemia/sangue , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Malondialdeído/sangue , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/tratamento farmacológico , Sobrepeso/sangue , Placebos/farmacologia , Placebos/uso terapêutico , Extratos Vegetais/farmacologia , Pirogalol/sangue , Compostos de Sulfidrila/sangue , Superóxido Dismutase/sangue
16.
Nutrients ; 11(2)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696041

RESUMO

Milk and dairy products are known to contain various bioactives with potential anti-inflammatory and immune modulating effects. Previous research has indicated that milk produced from hyperimmunized cows provided meaningful health benefits to individuals suffering from varying degrees of osteoarthritis and rheumatoid arthritis. PURPOSE: To examine the impact of MicroLactin®, a proprietary milk protein concentrate, on joint discomfort and physical function, exercise performance, quality of life and various measures of affect. METHODS: Non-osteoarthritic men (42.5 ± 8.9 years, 176.7 ± 6.7 cm, 89.9 ± 11.5 kg, 28.8 ± 3.5 kg/m², n = 30) and women (46.4 ± 9.6 years, 163.1 ± 8.2 cm, 72.2 ± 13.1 kg, 27.2 ± 5.3 kg/m², n = 28) with mild to moderate knee pain during physical activity were randomized in a double-blind, placebo-controlled fashion to consume daily either a placebo (PLA) or MicroLactin® (ML) for a period of 8 weeks. Participants completed a functional capacity test pre and post-supplementation and completed visual analog scales (VAS), a 6-min walking test, WOMAC and profile of mood states (POMS) to assess changes in joint health, discomfort, physical function, exercise performance and affect. Mixed factorial ANOVA was used for all statistical analysis and significance was set a priori at p ≤ 0.05. RESULTS: Distance covered in the 6-min walking significantly improved 9% in ML versus 2% in PLA (mean difference: 110 ± 43 m, p = 0.012) in addition to 11 WOMAC components and 5 VAS reflective of ML improving joint health, discomfort and joint stability (all p < 0.05 vs. PLA). Additionally, ML also improved overall perceptions of neck and back health compared to PLA. Serum and whole blood indicators of clinical safety remained within normal ranges throughout the study. CONCLUSIONS: In comparison to placebo, daily doses of MicroLactin® yielded improvements in several components of the WOMAC, multiple visual analog scales indicative of joint health and stability, discomfort and pain, as well as significant improvements in distance covered during a 6-min walking test. Supplementation was well tolerated with no significant changes in whole-blood or serum markers of clinical safety.


Assuntos
Exercício Físico , Artropatias/prevenção & controle , Proteínas do Leite/farmacologia , Dor/prevenção & controle , Adulto , Animais , Bovinos , Método Duplo-Cego , Feminino , Humanos , Articulação do Joelho , Masculino , Pessoa de Meia-Idade , Proteínas do Leite/administração & dosagem , Medição da Dor
18.
Nutrients ; 10(11)2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463324

RESUMO

Withania somnifera (Ashwagandha) is an Ayurvedic herb categorized as having "rasayana" (rejuvenator), longevity, and revitalizing properties. Sensoril® is a standardized aqueous extract of the roots and leaves of Withania somnifera. Purpose: To examine the impact of Sensoril® supplementation on strength training adaptations. Methods: Recreationally active men (26.5 ± 6.4 years, 181 ± 6.8 cm, 86.9 ± 12.5 kg, 24.5 ± 6.6% fat) were randomized in a double-blind fashion to placebo (PLA, n = 19) or 500 mg/d Sensoril® (S500, n = 19). Body composition (DEXA), muscular strength, power, and endurance, 7.5 km cycling time trial, and clinical blood chemistries were measured at baseline and after 12 weeks of supplementation and training. Subjects were required to maintain their normal dietary habits and to follow a specific, progressive overload resistance-training program (4-day/week, upper body/lower body split). 2 × 2 mixed factorial ANOVA was used for analysis and statistical significance was set a priori at p ≤ 0.05. Results: Gains in 1-RM squat (S500: +19.1 ± 13.0 kg vs. PLA +10.0 ± 6.2 kg, p = 0.009) and bench press (S500: +12.8 ± 8.2 kg vs. PLA: +8.0 ± 6.0 kg, p = 0.048) were significantly greater in S500. Changes in DEXA-derived android/gynoid ratio (S500: +0.0 ± 0.14 vs. PLA: +0.09 ± 0.1, p = 0.03) also favored S500. No other between-group differences were found for body composition, visual analog scales for recovery and affect, or systemic hemodynamics, however, only the S500 group experienced statistically significant improvements in average squat power, peak bench press power, 7.5 km time trial performance, and perceived recovery scores. Clinical chemistry analysis indicated a slight polycythemia effect in PLA, with no other statistical or clinically relevant changes being noted. Conclusions: A 500 mg dose of an aqueous extract of Ashwagandha improves upper and lower-body strength, supports a favorable distribution of body mass, and was well tolerated clinically in recreationally active men over a 12-week resistance training and supplementation period.


Assuntos
Composição Corporal/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Resistência Física/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Withania/química , Adulto , Suplementos Nutricionais , Método Duplo-Cego , Contagem de Eritrócitos , Eritrócitos/efeitos dos fármacos , Humanos , Lipoproteínas LDL/sangue , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Placebos , Extratos Vegetais/efeitos adversos , Treinamento Resistido , Fenômenos Fisiológicos da Nutrição Esportiva , Withania/efeitos adversos , Adulto Jovem
19.
J Diet Suppl ; 14(3): 288-302, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27611657

RESUMO

Using a prospective, randomized, double-blind, crossover study design, fifteen healthy male (n = 8) and female (n = 7) participants (mean ± standard deviation (SD): 28.3 ± 6.1 yr, 176.3 ± 11.4 cm, 89.8 ± 21.7 kg, 28.5 ± 4.8 kg/m2) completed this study. Two testing sessions occurred after an overnight fast and refraining from physical exercise. Prior to and 60, 120, and 180 minutes after single dose ingestion of placebo (PLA) or a Thermogenic Supplement (TS), visual analog scales (VAS), resting metabolic rate (VO2), and venous blood were collected. Resting heart rate and blood pressures were collected before, and 30, 60, 90, 120, 150 and 180 minutes after PLA or TS ingestion. Significant group × time interactions were found for VO2 with TS experiencing significant (p < 0.05) increases 60 and 120 minutes after ingestion. Respiratory quotient values tended to be lower 180 minutes (p = 0.07) after TS ingestion. TS group reported increased energy 60 minutes (p < 0.05) after ingestion. No interactions were reported for resting heart rate or blood pressure. Significant within-group reductions in systolic blood pressure were noted for PLA, while resting heart rates were significantly lower in TS 30 and 60 minutes after ingestion. An interaction for epinephrine (p = 0.02) was found, while no changes were reported for norepinephrine and dopamine. Dependent t-tests using area under the curve calculations revealed higher AUC values for epinephrine in TS compared to PLA (p = 0.001). In conclusion, ingestion of a single dose of TS increased oxygen consumption, epinephrine and energy levels, while substrate oxidation tended to change in comparison to a placebo. No adverse responses were reported.


Assuntos
Metabolismo Basal/fisiologia , Suplementos Nutricionais , Metabolismo Energético , Lipólise , Termogênese/fisiologia , Adulto , Análise de Variância , Área Sob a Curva , Pressão Sanguínea , Calorimetria , Estudos Cross-Over , Método Duplo-Cego , Epinefrina/metabolismo , Feminino , Voluntários Saudáveis , Frequência Cardíaca , Humanos , Masculino , Consumo de Oxigênio , Estudos Prospectivos , Distribuição Aleatória , Descanso/fisiologia , Escala Visual Analógica , Adulto Jovem
20.
J Diet Suppl ; 14(1): 9-24, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27164220

RESUMO

Theacrine (1,3,7,9-tetramethyluric acid) is a naturally occurring purine alkaloid, present in Camellia assamica variety kucha tea. Using a two-part approach in humans, the impact of theacrine (TeaCrine®, TC) was used to examine subjective dose-response, daily changes in cognitive and psychometric parameters, and changes in gas exchange and vital signs. All indicators were chosen to better ascertain the previously reported animal and human outcomes involving theacrine administration. Part 1 was a randomized, open-label, dose-response investigation in nine healthy participants whereby three participants ingested 400 mg TC per day and six participants ingested 200 mg/day. Participants recorded subjective changes in cognitive, psychometric, and exercise attributes using 150-mm anchored visual analog scale (VAS) before, and 1, 4, and 6 hours after ingestion every day for 7 consecutive days. Part 2 was a randomized, double-blind, placebo-controlled, crossover investigation in 15 healthy subjects in which all participants ingested a single 200 mg dose of TC or Placebo (PLA). Anchored VAS questionnaires were used to detect subjective changes in various aspects of physical and mental energy along with changes in gas exchange and hemodynamic parameters before, and 1, 2, and 3 hours after acute ingestion. Energy, focus, and concentration increased from baseline values in both doses with no dose-response effect. VAS responses in the 200 mg for willingness to exercise, anxiety, motivation to train and libido increased across the measurement period while no such change was seen with the 400 mg dose. After consuming a single 200 mg dose, significant group × time interaction effects were seen for energy, fatigue, and concentration. No changes in resting heart rate, gas exchange, systemic hemodynamics or side effect profiles were noted.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa