RESUMO
Different clones, protocol conditions, instruments, and scoring/readout methods may pose challenges in introducing different PD-L1 assays for immunotherapy. The diagnostic accuracy of using different PD-L1 assays interchangeably for various purposes is unknown. The primary objective of this meta-analysis was to address PD-L1 assay interchangeability based on assay diagnostic accuracy for established clinical uses/purposes. A systematic search of the MEDLINE database using PubMed platform was conducted using "PD-L1" as a search term for 01/01/2015 to 31/08/2018, with limitations "English" and "human". 2,515 abstracts were reviewed to select for original contributions only. 57 studies on comparison of two or more PD-L1 assays were fully reviewed. 22 publications were selected for meta-analysis. Additional data were requested from authors of 20/22 studies in order to enable the meta-analysis. Modified GRADE and QUADAS-2 criteria were used for grading published evidence and designing data abstraction templates for extraction by reviewers. PRISMA was used to guide reporting of systematic review and meta-analysis and STARD 2015 for reporting diagnostic accuracy study. CLSI EP12-A2 was used to guide test comparisons. Data were pooled using random-effects model. The main outcome measure was diagnostic accuracy of various PD-L1 assays. The 22 included studies provided 376 2×2 contingency tables for analyses. Results of our study suggest that, when the testing laboratory is not able to use an Food and Drug Administration-approved companion diagnostic(s) for PD-L1 assessment for its specific clinical purpose(s), it is better to develop a properly validated laboratory developed test for the same purpose(s) as the original PD-L1 Food and Drug Administration-approved immunohistochemistry companion diagnostic, than to replace the original PD-L1 Food and Drug Administration-approved immunohistochemistry companion diagnostic with a another PD-L1 Food and Drug Administration-approved companion diagnostic that was developed for a different purpose.
Assuntos
Antígeno B7-H1/análise , Imuno-Histoquímica/métodos , Humanos , Imuno-Histoquímica/normasRESUMO
Significant improvements in the technology of RNA in situ hybridization (RNA-ISH) in the past five decades have opened up novel fields of its application as a valuable and an attractive adjunct to the portfolio of pathologist's daily routine diagnostic practice.In contrast to the former methodology, the current bDNA-based technology is not only easier to handle but also considerably more sensitive, enabling single-target molecule detection in formalin-fixed and paraffin-embedded tissue specimens without significant effort by both the lab and the evaluating pathologist, as assays can be run on standard automated staining devices and evaluated by light microscopy. Compared to molecular methods like RT-PCR and whole-genome analysis, RNA-ISH maintains tissue integrity thus offering the invaluable advantage of localization of target cells especially in relation to secreted proteins and expression of the target sequence in multiple cell types. The first clinical trials implementing RNA-ISH for patient stratification and selection are in progress and already led to the first drug approvals based on its use as a CDx test.In addition to its role as a complementary method for the establishment of novel IHC procedures or as an addition or replacement to IHC in the standard routine portfolio, RNA-ISH has gained special importance for its capacity to detect noncoding RNA species or mutation or splice variants, where no alternative procedures are available. This more complex application requires development of standardized procedures and involvement of the pathologist during assay establishment and for routine specimen evaluation.The present article reviews the development of RNA-ISH from its early uses to its current applications in research and diagnostics based on the authors' considerable experience of applying it as tool in a biopharmaceutical research organization.
Assuntos
Hibridização In Situ/tendências , RNA , Humanos , RNA/genética , TecnologiaRESUMO
Several immunohistochemistry (IHC) assays have been developed to assess tumor programmed death-ligand 1 (PD-L1) expression levels in patients who are candidates for programmed death-1 (PD-1)/PD-L1 inhibitor therapy. The PD-L1 IHC 28-8 pharmDx kit is FDA-approved as a complementary diagnostic and CE-marked as an in vitro diagnostic device for nivolumab therapy in melanoma and specific lung cancer subtypes (and for squamous cell carcinoma of the head and neck/urothelial carcinoma in Europe only). Kit availability is limited outside the United States, and its use requires the Dako Autostainer Link 48 platform, which is unavailable in many laboratories. Validated laboratory-developed tests based on 28-8 concentrated antibody outside the kit are needed. This study compared the results from PD-L1 expression level analysis across four immunohistochemistry platforms (Dako Autostainer Link 48, Dako Omnis, Leica Bond-III, and Ventana BenchMark ULTRA) with the 28-8 pharmDx kit in lung cancer (multiple histologies), melanoma, and head and neck cancer (multiple histologies). Samples were prepared per protocol for each platform and stained using PD-L1 IHC 28-8 pharmDx kit on Dako Autostainer Link 48, and per protocol for each platform. The control samples (tonsil and placenta tissue; cell lines with prespecified PD-L1 expression levels) were tested to evaluate the specificity and the sensitivity of test assays. An agreement level of 0.90 with the pharmDx kit was set for each platform. Inter- and intra-assay reliability were assessed. Evaluable samples were lung cancer = 29; melanoma = 31; head and neck cancer = 30. Mean agreement was calculated for PD-L1 expression levels of ≥1%, ≥5%, ≥10%, and ≥50%. Mean overall agreement for all indications was 0.87-0.99. Inter- and intra-assay of scoring/classification repeatability was 100%. Analysis of PD-L1 expression levels using laboratory-developed immunohistochemistry assays with 28-8 antibody may be permissible if the platform is validated using reference samples with defined expression levels.
Assuntos
Anticorpos Monoclonais , Antígeno B7-H1/análise , Biomarcadores Tumorais/análise , Imuno-Histoquímica/métodos , Humanos , Coloração e Rotulagem/métodosRESUMO
Based on the principle of nonsense-mediated mRNA decay, we sought to identify MLH1 or MSH2-deficient colorectal tumours through relative quantification of mRNA expression with real-time PCR (RT-PCR) analysis. MLH1 and MSH2 mRNAs were almost equally expressed as defined by MLH1 to MSH2 transcript ratio (mean 1.41) in microsatellite stable, mismatch repair (MMR) proficient tumours (n = 16). A close correlation between loss of protein expression and MMR-mRNA levels was found in highly microsatellite instable (MSI-H) tumours deficient of MLH1 or MSH2. MLH1/MSH2 ratio was low in 11 sporadic and nine hereditary MLH1-deficient carcinomas (mean 0.51), whereas the ratio was high in 17 MSH2-deficient hereditary non-polyposis colorectal cancer (HNPCC) associated carcinomas (mean 6.8). Notably, in the normal tissues of HNPCC patients with MSH2 mutations, the MLH1/MSH2 transcript ratios were significantly elevated (ratio > 2.0) as compared to the ratios of normal mucosa in patients with MMR-proficient tumours (27 of 32 ratio < 2.0; p = 0.00113). Analysis of B-lymphocytes of HNPCC patients with proven MMR gene mutation confirmed these findings. In conclusion, RT-PCR allows relative quantification of MMR gene mRNA expression in formalin-fixed and paraffin-embedded tissue. Furthermore, this approach enables quantification of haploinsufficiency due to nonsense-mediated mRNA decay in normal tissue and B-lymphocytes from patients carrying MSH2 germline mutations and may be useful for identification of asymptomatic carriers of pathogenic germline mutations.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Adenoma/metabolismo , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Neoplasias Colorretais/metabolismo , Mutação em Linhagem Germinativa/genética , Proteína 2 Homóloga a MutS/deficiência , Proteínas Nucleares/deficiência , RNA Mensageiro/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/metabolismo , Estudos de Casos e Controles , Neoplasias Colorretais/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença/genética , Testes Genéticos , Humanos , Mucosa Intestinal/metabolismo , Pessoa de Meia-Idade , Proteína 1 Homóloga a MutL , Proteína 2 Homóloga a MutS/genética , Proteínas Nucleares/genética , RNA Mensageiro/genética , RNA Neoplásico/metabolismoRESUMO
OBJECTIVES: Metastatic colorectal cancer (CRC) remains a leading cause of cancer related deaths. Patients with oligometastatic liver disease represent a clinical subgroup with heterogeneous course. Until now, biomarkers to characterize outcome and therapeutic options have not been fully established. METHODS: We investigated the prevalence of FGFR alterations in a total of 140 primary colorectal tumors and 63 liver metastases of 55 oligometastatic CRC patients. FGF receptors (FGFR1-4) and their ligands (FGF3, 4 and 19) were analyzed for gene amplifications and rearrangements as well as for RNA overexpression in situ. Results were correlated with clinico-pathologic data and molecular subtypes. RESULTS: Primary tumors showed FGFR1 (6.3%) and FGF3,4,19 (2.2%) amplifications as well as FGFR1 (10.1%), FGFR2 (5.5%) and FGFR3 (16.2%) overexpression. In metastases, we observed FGFR1 amplifications (4.8%) as well as FGFR1 (8.5%) and FGFR3 (14.9%) overexpression. Neither FGFR2-4 amplifications nor gene rearrangements were observed. FGFR3 overexpression was significantly associated with shorter overall survival in metastases (mOS 19.9 vs. 47.4 months, HR=3.14, p=0.0152), but not in primary CRC (HR=1.01, p=0.985). Although rare, also FGFR1 amplification was indicative of worse outcome (mOS 12.6 vs. 47.4 months, HR=8.83, p=0.00111). CONCLUSIONS: We provide the so far most comprehensive analysis of FGFR alterations in primary and metastatic CRC. We describe FGFR3 overexpression in 15% of CRC patients with oligometastatic liver disease as a prognosticator for poor outcome. Recently FGFR3 overexpression has been shown to be a potential therapeutic target. Therefore, we suggest focusing on this subgroup in upcoming clinical trials with FGFR-targeted therapies.
RESUMO
BACKGROUND: Chronic inflammation is frequently observed on histological analysis of malignant and non-malignant prostate specimens. It is a suspected supporting factor for prostate diseases and their progression and a main cause of false positive PSA tests in cancer screening. We hypothesized that inflammation induces autoantibodies, which may be useful biomarkers. We aimed to identify and validate prostate inflammation associated serum autoantibodies in prostate cancer patients and evaluate the expression of corresponding autoantigens. METHODS: Radical prostatectomy specimens of prostate cancer patients (N = 70) were classified into high and low inflammation groups according to the amount of tissue infiltrating lymphocytes. The corresponding pre-surgery blood serum samples were scrutinized for autoantibodies using a low-density protein array. Selected autoantigens were identified in prostate tissue and their expression pattern analyzed by immunohistochemistry and qPCR. The identified autoantibody profile was cross-checked in an independent sample set (N = 63) using the Luminex-bead protein array technology. RESULTS: Protein array screening identified 165 autoantibodies differentially abundant in the serum of high compared to low inflammation patients. The expression pattern of three corresponding antigens were established in benign and cancer tissue by immunohistochemistry and qPCR: SPAST (Spastin), STX18 (Syntaxin 18) and SPOP (speckle-type POZ protein). Of these, SPAST was significantly increased in prostate tissue with high inflammation. All three autoantigens were differentially expressed in primary and/or castration resistant prostate tumors when analyzed in an inflammation-independent tissue microarray. Cross-validation of the inflammation autoantibody profile on an independent sample set using a Luminex-bead protein array, retrieved 51 of the significantly discriminating autoantibodies. Three autoantibodies were significantly upregulated in both screens, MUT, RAB11B and CSRP2 (p>0.05), two, SPOP and ZNF671, close to statistical significance (p = 0.051 and 0.076). CONCLUSIONS: We provide evidence of an inflammation-specific autoantibody profile and confirm the expression of corresponding autoantigens in prostate tissue. This supports evaluation of autoantibodies as non-invasive markers for prostate inflammation.
Assuntos
Autoanticorpos/sangue , Inflamação/sangue , Próstata/imunologia , Doenças Prostáticas/sangue , Neoplasias da Próstata/sangue , Adenosina Trifosfatases/sangue , Adulto , Idoso , Autoanticorpos/química , Biópsia , Doença Crônica , Reações Falso-Positivas , Humanos , Imuno-Histoquímica , Inflamação/imunologia , Linfócitos/citologia , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/sangue , Antígeno Prostático Específico/sangue , Prostatectomia , Doenças Prostáticas/imunologia , Neoplasias da Próstata/imunologia , Análise Serial de Proteínas , Proteínas Qa-SNARE/sangue , Proteínas Repressoras/sangue , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espastina , Análise Serial de TecidosRESUMO
We describe a new class of plant small heat stress proteins (sHsps) with dominant nuclear localization (Hsp17-CIII). The corresponding proteins in tomato, Arabidopsis, and rice are encoded by unique genes containing a short intron in the beta4-encoding region of the alpha-crystallin domain (ACD). The strong nuclear localization results from a cluster of basic amino acid residues in the loop between beta5 and beta6 of the ACD. Using yeast 2-hybrid tests, analyses of native complexes of the sHsps, and immunofluorescence data, we demonstrate that, in contrast to earlier observations (Kirschner et al 2000), proteins of the sHsp classes CI, CII, and CIII interact with each other, thereby influencing oligomerization state and intracellular localization.
Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Choque Térmico/metabolismo , Solanum lycopersicum/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Choque Térmico/genética , Solanum lycopersicum/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Técnicas do Sistema de Duplo-HíbridoRESUMO
Compared to the overall multiplicity of more than 20 plant Hsfs, detailed analyses are mainly restricted to tomato and Arabidopsis and to three important representatives of the family (Hsfs A1, A2 and B1). The three Hsfs represent examples of striking functional diversification specialized for the three phases of the heat stress (hs) response (triggering, maintenance and recovery). This is best illustrated for the tomato Hsf system: (i) HsfA1a is the master regulator responsible for hs-induced gene expression including synthesis of HsfA2 and HsfB1. It is indispensible for the development of thermotolerance. (ii) Although functionally equivalent to HsfA1a, HsfA2 is exclusively found after hs induction and represents the dominant Hsf, the "working horse" of the hs response in plants subjected to repeated cycles of hs and recovery in a hot summer period. Tomato HsfA2 is tightly integrated into a network of interacting proteins (HsfA1a, Hsp17-CII, Hsp17-CI) influencing its activity and intracellular distribution. (iii) Because of structural peculiarities, HsfB1 acts as coregulator enhancing the activity of HsfA1a and/or HsfA2. But in addition, it cooperates with yet to be identified other transcription factors in maintaining and/or restoring housekeeping gene expression.
Assuntos
Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Chaperonas Moleculares/metabolismo , Solanum lycopersicum/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis , Southern Blotting , Proteínas de Ligação a DNA/genética , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico , Calefação , Solanum lycopersicum/genética , Dados de Sequência Molecular , Proteínas de Plantas , Plantas Geneticamente Modificadas , Fatores de Transcrição/genéticaRESUMO
HsfA2 is a heat stress (hs)-induced Hsf in peruvian tomato (Lycopersicon peruvianum) and the cultivated form Lycopersicon esculentum. Due to the high activator potential and the continued accumulation during repeated cycles of heat stress and recovery, HsfA2 becomes a dominant Hsf in thermotolerant cells. The formation of heterooligomeric complexes with HsfA1 leads to nuclear retention and enhanced transcriptional activity of HsfA2. This effect seems to represent one part of potential molecular mechanisms involved in its activity control. As shown in this paper, the activity of HsfA2 is also controlled by a network of nucleocytoplasmic small Hsps influencing its solubility, intracellular localization and activator function. By yeast two-hybrid interaction and transient coexpression studies in tobacco (Nicotiana plumbaginifolia) mesophyll protoplasts, we found that tomato (Lycopersicon esculentum) Hsp17.4-CII acts as corepressor of HsfA2. Given appropriate conditions, both proteins together formed large cytosolic aggregates which could be solubilized in presence of class CI sHsps. However, independent of the formation of aggregates or of the nucleocytoplasmic distribution of HsfA2, its transcriptional activity was specifically repressed by interaction of Hsp17.4-CII with the C-terminal activator domain. Although not identical in all aspects, the situation with the highly expressed, heat stress-inducible Arabidopsis HsfA2 was found to be principally similar. In corresponding reporter assays its activity was repressed in presence of AtHsp17.7-CII but not of AtHsp17.6-CII or LpHsp17.4-CII.